版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省安慶市第十一中學(xué)2024屆數(shù)學(xué)高一下期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一組數(shù)平均數(shù)是,方差是,則另一組數(shù),的平均數(shù)和方差分別是()A. B.C. D.2.在△ABC中,若a=2bsinA,則B為A. B. C.或 D.或3.意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一列數(shù):1,1,2,3,5,8,13,21,….該數(shù)列的特點是:前兩個數(shù)都是1,從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和,人們把這樣的一列數(shù)組成的數(shù)列稱為“斐波那契數(shù)列”,則().A.1 B.2019 C. D.4.某人射擊一次,設(shè)事件A:“擊中環(huán)數(shù)小于4”;事件B:“擊中環(huán)數(shù)大于4”;事件C:“擊中環(huán)數(shù)不小于4”;事件D:“擊中環(huán)數(shù)大于0且小于4”,則正確的關(guān)系是A.A和B為對立事件 B.B和C為互斥事件C.C與D是對立事件 D.B與D為互斥事件5.已知函數(shù),其中為整數(shù),若在上有兩個不相等的零點,則的最大值為()A. B. C. D.6.若實數(shù)x,y滿足x2y2A.4,8 B.8,+7.在中,角,,所對的邊分別為,,,若,,,則()A. B. C. D.8.設(shè)等比數(shù)列的公比,前n項和為,則()A.2 B.4 C. D.9.一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是A.兩次都中靶B.至少有一次中靶C.兩次都不中靶D.只有一次中靶10.橢圓中以點M(1,2)為中點的弦所在直線斜率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,長方體中,,,,與相交于點,則點的坐標(biāo)為______________.12.已知向量,則與的夾角是_________.13.某球的體積與表面積的數(shù)值相等,則球的半徑是14.已知向量,且,則_______.15.在△ABC中,a、b、c分別為角A、B、C的對邊,若b·cosC=c·cosB,且cosA=,則cosB的值為_____.16.已知數(shù)列的通項公式為,若數(shù)列為單調(diào)遞增數(shù)列,則實數(shù)的取值范圍是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱柱中,平面平面,,,為棱的中點.(1)證明:;(2)求三棱柱的高.18.解答下列問題:(1)求平行于直線3x+4y-2=0,且與它的距離是1的直線方程;(2)求垂直于直線x+3y-5=0且與點P(-1,0)的距離是的直線方程.19.某質(zhì)檢機構(gòu)檢測某產(chǎn)品的質(zhì)量是否合格,在甲、乙兩廠勻速運行的自動包裝傳送帶上每隔10分鐘抽一包產(chǎn)品,稱其質(zhì)量(單位:克),分別記錄抽查數(shù)據(jù),獲得質(zhì)量數(shù)據(jù)莖葉圖(如圖).(1)該質(zhì)檢機構(gòu)采用了哪種抽樣方法抽取的產(chǎn)品?根據(jù)樣本數(shù)據(jù),求甲、乙兩廠產(chǎn)品質(zhì)量的平均數(shù)和中位數(shù);(2)若從甲廠6件樣品中隨機抽取兩件.①列舉出所有可能的抽取結(jié)果;②記它們的質(zhì)量分別是克,克,求的概率.20.將邊長分別為、、、…、、、…的正方形疊放在一起,形成如圖所示的圖形,由小到大,依次記各陰影部分所在的圖形為第個、第個、……、第個陰影部分圖形.設(shè)前個陰影部分圖形的面積的平均值為.記數(shù)列滿足,(1)求的表達式;(2)寫出,的值,并求數(shù)列的通項公式;(3)定義,記,且恒成立,求的取值范圍.21.在正四棱柱中,底面邊長為,側(cè)棱長為.(1)求證:平面平面;(2)求直線與平面所成的角的正弦值;(3)設(shè)為截面內(nèi)-點(不包括邊界),求到面,面,面的距離平方和的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
直接利用公式:平均值方差為,則的平均值和方差為:得到答案.【題目詳解】平均數(shù)是,方差是,的平均數(shù)為:方差為:故答案選B【題目點撥】本題考查了平均數(shù)和方差的計算:平均數(shù)是,方差是,則的平均值和方差為:.2、C【解題分析】,,則或,選C.3、A【解題分析】
計算部分數(shù)值,歸納得到,計算得到答案.【題目詳解】;;;…歸納總結(jié):故故選:【題目點撥】本題考查了數(shù)列的歸納推理,意在考查學(xué)生的推理能力.4、D【解題分析】
根據(jù)互斥事件和對立事件的概念,進行判定,即可求解,得到答案.【題目詳解】由題意,A項中,事件“擊中環(huán)數(shù)等于4環(huán)”可能發(fā)生,所以事件A和B為不是對立事件;B項中,事件B和C可能同時發(fā)生,所以事件B和C不是互斥事件;C項中,事件“擊中環(huán)數(shù)等于0環(huán)”可能發(fā)生,所以事件C和D為不是對立事件;D項中,事件B:“擊中環(huán)數(shù)大于4”與事件D:“擊中環(huán)數(shù)大于0且小于4”,不可能同時發(fā)生,所以B與D為互斥事件,故選D.【題目點撥】本題主要考查了互斥事件和對立事件的概念及判定,其中解答中熟記互斥事件和對立事件的概念,準(zhǔn)確判定是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.5、A【解題分析】
利用一元二次方程根的分布的充要條件得到關(guān)于的不等式,再由為整數(shù),可得當(dāng)取最小時,取最大,從而求得答案.【題目詳解】∵在上有兩個不相等的零點,∴∵,∴當(dāng)取最小時,取最大,∵兩個零點的乘積小于1,∴,∵為整數(shù),令時,,滿足.故選:A.【題目點撥】本題考查一元二次函數(shù)的零點,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意為整數(shù)的應(yīng)用.6、A【解題分析】
利用基本不等式得x2y2【題目詳解】∵x2y2≤(x2+y2)24∴x2故選A.【題目點撥】本題考查基本不等式求最值問題,解題關(guān)鍵是掌握基本不等式的變形應(yīng)用:ab≤(a+b)7、C【解題分析】
在中,利用正弦定理求出即可.【題目詳解】在中,角,,所對的邊分別為,,,已知:,,,利用正弦定理:,解得:.故選C.【題目點撥】本題考查了正弦定理的應(yīng)用及相關(guān)的運算問題,屬于基礎(chǔ)題.8、D【解題分析】
設(shè)首項為,利用等比數(shù)列的求和公式與通項公式求解即可.【題目詳解】設(shè)首項為,因為等比數(shù)列的公比,所以,故選:D.【題目點撥】本題主要考查等比數(shù)列的求和公式與通項公式,熟練掌握基本公式是解題的關(guān)鍵,屬于基礎(chǔ)題.9、A【解題分析】
利用對立事件、互斥事件的定義直接求解.【題目詳解】一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是兩次都中靶.故選:A.【題目點撥】本題考查互事件的判斷,是中檔題,解題時要認真審題,注意對立事件、互斥事件的定義的合理運用.10、A【解題分析】
先設(shè)出弦的兩端點的坐標(biāo),分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率.【題目詳解】設(shè)弦的兩端點為,,代入橢圓得,兩式相減得,即,即,即,即,∴弦所在的直線的斜率為,故選A.【題目點撥】本題主要考查了橢圓的性質(zhì)以及直線與橢圓的關(guān)系.在解決弦長的中點問題,涉及到“中點與斜率”時常用“點差法”設(shè)而不求,將弦所在直線的斜率、弦的中點坐標(biāo)聯(lián)系起來,相互轉(zhuǎn)化,達到解決問題的目的,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
易知是的中點,求出的坐標(biāo),根據(jù)中點坐標(biāo)公式求解.【題目詳解】可知,,由中點坐標(biāo)公式得的坐標(biāo)公式,即【題目點撥】本題考查空間直角坐標(biāo)系和中點坐標(biāo)公式,空間直角坐標(biāo)的讀取是易錯點.12、【解題分析】
利用向量的數(shù)量積直接求出向量的夾角即可.【題目詳解】由題知,,因為,所以與的夾角為.故答案為:.【題目點撥】本題考查了利用向量的數(shù)量積求解向量的夾角,屬于基礎(chǔ)題.13、3【解題分析】試題分析:,解得.考點:球的體積和表面積14、【解題分析】
先由向量共線,求出,再由向量模的坐標(biāo)表示,即可得出結(jié)果.【題目詳解】因為,且,所以,解得,所以,因此.故答案為【題目點撥】本題主要考查求向量的模,熟記向量共線的坐標(biāo)表示,以及向量模的坐標(biāo)表示即可,屬于基礎(chǔ)題型.15、【解題分析】
利用余弦定理表示出與,代入已知等式中,整理得到,再利用余弦定理表示出,將及的值代入用表示出,將表示出的與代入中計算,即可求出值.【題目詳解】由題意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,則,故答案為.【題目點撥】本題考查了解三角形的綜合應(yīng)用,高考中經(jīng)常將三角變換與解三角形知識綜合起來命題,如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理實現(xiàn)邊角互化;以上特征都不明顯時,則要考慮兩個定理都有可能用到.16、【解題分析】
根據(jù)題意得到,推出,恒成立,求出的最大值,即可得出結(jié)果.【題目詳解】因為數(shù)列的通項公式為,且數(shù)列為單調(diào)遞增數(shù)列,所以,即,所以,恒成立,因此即可,又隨的增大而減小,所以,因此實數(shù)的取值范圍是.故答案為:【題目點撥】本題主要考查由數(shù)列的單調(diào)性求參數(shù),熟記遞增數(shù)列的特點即可,屬于??碱}型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】
(1)連接,,作為棱的中點,連結(jié),,由平面平面,得到平面,則,再由,即可證明平面,從而得證;(2)根據(jù)等體積法求出點面距.【題目詳解】(1)證明:連接,.∵,,∴是等邊三角形.作為棱的中點,連結(jié),,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴平行四邊形是菱形.∴.又,分別為,的中點,∴,∴.又,平面,平面.∴平面.又平面,∴.(2)解:連接,∵,,∴為正三角形.∵為的中點,∴,同理可得又∵平面平面,且平面平面,平面,∴平面.∴,又三棱柱的高即點到平面的距離.在中,,,則.又∵,∴,則.【題目點撥】本題考查線面垂直,線線垂直的證明,三棱錐的體積及點到平面的距離的計算,屬于中檔題.18、(1)3x+4y+3=1或3x+4y-7=1(2)3x-y+9=1或3x-y-3=1【解題分析】
試題分析:(1)將平行線的距離轉(zhuǎn)化為點到線的距離,用點到直線的距離公式求解;(2)由相互垂直設(shè)出所求直線方程,然后由點到直線的距離求解.試題解析:解:(1)設(shè)所求直線上任意一點P(x,y),由題意可得點P到直線的距離等于1,即,∴3x+4y-2=±5,即3x+4y+3=1或3x+4y-7=1.(2)所求直線方程為,由題意可得點P到直線的距離等于,即,∴或,即3x-y+9=1或3x-y-3=1.考點:1.兩條平行直線間的距離公式;2.兩直線的平行與垂直關(guān)系19、(1)系統(tǒng)抽樣;乙廠產(chǎn)品質(zhì)量的平均數(shù),乙廠質(zhì)量的中位數(shù)是113;甲廠質(zhì)量的平均數(shù),甲廠質(zhì)量的中位數(shù)是113(2)①詳見解析②【解題分析】
(1)根據(jù)抽樣方式即可確定抽樣方法;根據(jù)莖葉圖中的數(shù)據(jù),即可分別求得兩組的平均數(shù)與中位數(shù);(2)由甲廠的樣品數(shù)據(jù),即可由列舉法得所有可能;根據(jù)列舉的數(shù)據(jù),即可得滿足的情況,即可求得復(fù)合要求的概率.【題目詳解】(1)由題意該質(zhì)檢機構(gòu)抽取產(chǎn)品采用的抽樣方法為系統(tǒng)抽樣,甲廠質(zhì)量的平均數(shù),甲廠質(zhì)量的中位數(shù)是113,乙廠產(chǎn)品質(zhì)量的平均數(shù),乙廠質(zhì)量的中位數(shù)是113.(2)①從甲廠6件樣品中隨機抽取兩件,分別為:,,,共15個.②設(shè)“”為事件,則事件共有5個結(jié)果:.所以的概率.【題目點撥】本題考查了莖葉圖的簡單應(yīng)用,由莖葉圖求平均值與中位數(shù),列舉法求古典概型概率的應(yīng)用,屬于基礎(chǔ)題.20、(1);(2),,;(3).【解題分析】
(1)根據(jù)題意,分別求出每一個陰影部分圖形的面積,即可得到前個陰影部分圖形的面積的平均值;(2)依據(jù)遞推式,結(jié)合分類討論思想,即可求出數(shù)列的通項公式;(3)先求出的表達式,再依題意得到,分類討論不等式恒成立的條件,取其交集,即得所求范圍?!绢}目詳解】(1)由題意有,第一個陰影部分圖形面積是:;第二個陰影部分圖形面積是:;第三個陰影部分圖形面積是:;所以第個陰影部分圖形面積是:;故;(2)由(1)知,,,所以,,當(dāng)時,當(dāng)時,,綜上,數(shù)列的通項公式為,。(3)由(2)知,,,由題意可得,恒成立,①當(dāng)時,,即,所以,②當(dāng)時,,即,所以,③當(dāng)時,,即,所以,綜上,。【題目點撥】本題主要考查數(shù)列的通項公式求法,數(shù)列不等式恒成立問題的解法以及分類討論思想的運用,意在考查學(xué)生邏輯推理能力及運算能力。21、(1)證明見解析;(2)(3)【解題分析】
(1)利用在正方體的幾何性質(zhì),得到,通過線面垂直和面面垂直的判定定理證明.(2)根據(jù)和平面平面,知是在平面上的射影,即為直線與平面所成的角,然后在中求解.(3)如圖所示從向面,面,面引垂線,構(gòu)成一個長方體,設(shè)到面,面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小班小雪節(jié)氣國旗下講話稿范文(9篇)
- 開學(xué)典禮致辭(15篇)
- 初級會計經(jīng)濟法基礎(chǔ)-初級會計《經(jīng)濟法基礎(chǔ)》模擬試卷335
- RRD硅油填充術(shù)后繼發(fā)高眼壓的眼前節(jié)相關(guān)影響因素分析及中醫(yī)體質(zhì)類型研究
- 建筑與市政工程質(zhì)量安全巡查的第三方解決方案
- 【醫(yī)學(xué)課件】加強防范醫(yī)療事故(83p)
- 2025版食堂食材采購合同及食品安全培訓(xùn)服務(wù)協(xié)議3篇
- 養(yǎng)魚店銷售員工作總結(jié)
- 酒店廚房管理規(guī)范制定
- 2025版行政上訴狀補充范文:權(quán)威解讀與實戰(zhàn)演練3篇
- 2025年山西國際能源集團限公司所屬企業(yè)招聘43人高頻重點提升(共500題)附帶答案詳解
- 青海省海北藏族自治州(2024年-2025年小學(xué)六年級語文)統(tǒng)編版隨堂測試(上學(xué)期)試卷及答案
- 江蘇省無錫市2023-2024學(xué)年高三上學(xué)期期終教學(xué)質(zhì)量調(diào)研測試語文試題(解析版)
- 《民航安全檢查(安檢技能實操)》課件-第一章 民航安全檢查員職業(yè)道德
- DB34T4826-2024畜禽養(yǎng)殖業(yè)污染防治技術(shù)規(guī)范
- 遼寧省沈陽市第七中學(xué)2023-2024學(xué)年七年級下學(xué)期期末數(shù)學(xué)試題
- 2024年湖南工業(yè)職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫附答案
- 2024年四川省成都市高新區(qū)中考數(shù)學(xué)二診試卷
- 礦井主要災(zāi)害事故防治應(yīng)急避災(zāi)知識培訓(xùn)課件
- 不老莓行業(yè)分析
- STARCCM基礎(chǔ)培訓(xùn)教程
評論
0/150
提交評論