2024屆山西省芮城縣高一數(shù)學第二學期期末教學質量檢測試題含解析_第1頁
2024屆山西省芮城縣高一數(shù)學第二學期期末教學質量檢測試題含解析_第2頁
2024屆山西省芮城縣高一數(shù)學第二學期期末教學質量檢測試題含解析_第3頁
2024屆山西省芮城縣高一數(shù)學第二學期期末教學質量檢測試題含解析_第4頁
2024屆山西省芮城縣高一數(shù)學第二學期期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山西省芮城縣高一數(shù)學第二學期期末教學質量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某工廠甲、乙、丙三個車間生產了同一種產品,數(shù)量分別為120件,80件,60件。為了解它們的產品質量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進行調查,其中從丙車間的產品中抽取了3件,則n=()A.9 B.10 C.12 D.132.如果將直角三角形的三邊都增加1個單位長度,那么新三角形()A.一定是銳角三角形 B.一定是鈍角三角形C.一定是直角三角形 D.形狀無法確定3.在中,角所對的邊分別為,已知,則最大角的余弦值是()A. B. C. D.4.某超市收銀臺排隊等候付款的人數(shù)及其相應概率如下:排隊人數(shù)01234概率0.10.160.30.30.10.04則至少有兩人排隊的概率為()A.0.16 B.0.26 C.0.56 D.0.745.若,則下列不等式正確的是()A. B. C. D.6.某校高一甲、乙兩位同學的九科成績如莖葉圖所示,則下列說法正確的是()A.甲、乙兩人的各科平均分不同 B.甲、乙兩人的中位數(shù)相同C.甲各科成績比乙各科成績穩(wěn)定 D.甲的眾數(shù)是83,乙的眾數(shù)為877.記等差數(shù)列前項和,如果已知的值,我們可以求得()A.的值 B.的值 C.的值 D.的值8.如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點,垂足為E,點F是PB上一點,則下列判斷中不正確的是()﹒A.平面PAC B. C. D.平面平面PBC9.已知關于的不等式對任意恒成立,則的取值范圍是()A. B.C. D.10.若圓上有且僅有兩個點到直線的距離等于,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)在上是減函數(shù),則的取值范圍是________.12.如圖,正方體的棱長為,動點在對角線上,過點作垂直于的平面,記這樣得到的截面多邊形(含三角形)的周長為,設,則當時,函數(shù)的值域__________.13.已知數(shù)列,若對任意正整數(shù)都有,則正整數(shù)______;14.如圖,在水平放置的邊長為1的正方形中隨機撤1000粒豆子,有400粒落到心形陰影部分上,據(jù)此估計心形陰影部分的面積為_________.15.數(shù)列的前項和,則的通項公式_____.16.若關于的方程()在區(qū)間有實根,則最小值是____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知(Ⅰ)求的值;(Ⅱ)若,求的值.18.已知橢圓C:x2a2+y2b2=1(a>b>0)的兩個焦點分別為F1,F(xiàn)2,離心率為12,過F1的直線l(1)求橢圓C的方程;(2)若直線y=kx+b與橢圓C分別交于A,B兩點,且OA⊥OB,試問點O到直線AB的距離是否為定值,證明你的結論.19.如圖,已知四棱錐的側棱底面,且底面是直角梯形,,,,,,點在棱上,且.(1)證明:平面;(2)求三棱錐的體積.20.在△中,,,且.(Ⅰ)求的值;(Ⅱ)求的大?。?1.已知三角形ABC的頂點為,,,M為AB的中點.(1)求CM所在直線的方程;(2)求的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】試題分析::∵甲、乙、丙三個車間生產的產品件數(shù)分別是120,80,60,∴甲、乙、丙三個車間生產的產品數(shù)量的比依次為6:4:3,丙車間生產產品所占的比例,因為樣本中丙車間生產產品有3件,占總產品的,所以樣本容量n=3÷=1.考點:分層抽樣方法2、A【解題分析】

直角三角形滿足勾股定理,,再比較,,大小關系即可.【題目詳解】設直角三角形滿足,則,又為新三角形最長邊,所以所以最大角為銳角,所以三角形為銳角三角形.故選A【題目點撥】判斷三角形形狀一般可通過余弦定理判斷,若有一角的余弦值小于零則為鈍角三角形,等于零則為直角三角形,最大角的余弦值大于零則為銳角三角形,屬于較易題目.3、B【解題分析】

由邊之間的比例關系,設出三邊長,利用余弦定理可求.【題目詳解】因為,所以c邊所對角最大,設,由余弦定理得,故選B.【題目點撥】本題考查余弦定理,計算求解能力,屬于基本題.4、D【解題分析】

利用互斥事件概率計算公式直接求解.【題目詳解】由某超市收銀臺排隊等候付款的人數(shù)及其相應概率表,得:至少有兩人排隊的概率為:.故選:D.【題目點撥】本題考查概率的求法、互斥事件概率計算公式,考查運算求解能力,是基礎題.5、C【解題分析】

根據(jù)不等式性質,結合特殊值即可比較大小.【題目詳解】對于A,當,滿足,但不滿足,所以A錯誤;對于B,當時,不滿足,所以B錯誤;對于C,由不等式性質“不等式兩邊同時加上或減去同一個數(shù)或式子,不等式符號不變”,所以由可得,因而C正確;對于D,當時,不滿足,所以D錯誤.綜上可知,C為正確選項,故選:C.【題目點撥】本題考查了不等式大小比較,不等式性質及特殊值的簡單應用,屬于基礎題.6、C【解題分析】

分別計算出甲、乙兩位同學成績的平均分、中位數(shù)、眾數(shù),由此確定正確選項.【題目詳解】甲的平均分為,乙的平均分,兩人平均分相同,故A選項錯誤.甲的中位數(shù)為,乙的中位數(shù)為,兩人中位數(shù)不相同,故B選項錯誤.甲的眾數(shù)是,乙的眾數(shù)是,故D選項錯誤.所以正確的答案為C.由莖葉圖可知,甲的數(shù)據(jù)比較集中,乙的數(shù)據(jù)比較分散,所以甲比較穩(wěn)定.(因為方差運算量特別大,故不需要計算出方差.)故選:C【題目點撥】本小題主要考查根據(jù)莖葉圖比較平均數(shù)、中位數(shù)、眾數(shù)、方差,屬于基礎題.7、C【解題分析】

設等差數(shù)列{an}的首項為a1,公差為d,由a5+a21=2a1+24d的值為已知,再利用等差數(shù)列的求和公式,即可得出結論.【題目詳解】設等差數(shù)列{an}的首項為a1,公差為d,∵已知a5+a21的值,∴2a1+24d的值為已知,∴a1+12d的值為已知,∵∴我們可以求得S25的值.故選:C.【題目點撥】本題考查等差數(shù)列的通項公式與求和公式的應用,考查學生的計算能力,屬于中檔題.8、C【解題分析】

根據(jù)線面垂直的性質及判定,可判斷ABC選項,由面面垂直的判定可判斷D.【題目詳解】對于A,PA垂直于以AB為直徑的圓所在平面,而底面圓面,則,又由圓的性質可知,且,則平面PAC.所以A正確;對于B,由A可知,由題意可知,且,所以平面,而平面,所以,所以B正確;對于C,由B可知平面,因而與平面不垂直,所以不成立,所以C錯誤.對于D,由A、B可知,平面PAC,平面,由面面垂直的性質可得平面平面PBC.所以D正確;綜上可知,C為錯誤選項.故選:C.【題目點撥】本題考查了線面垂直的性質及判定,面面垂直的判定定理,屬于基礎題.9、A【解題分析】

分別討論和兩種情況下,恒成立的條件,即可求得的取值范圍.【題目詳解】當時,不等式可化為,其恒成立當時,要滿足關于的不等式任意恒成立,只需解得:.綜上所述,的取值范圍是.故選:A.【題目點撥】本題考查了含參數(shù)一元二次不等式恒成立問題,解題關鍵是掌握含有參數(shù)的不等式的求解,首先需要對二次項系數(shù)討論,注意分類討論思想的應用,屬于基礎題.10、B【解題分析】

先求出圓心到直線的距離,然后結合圖象,即可得到本題答案.【題目詳解】由題意可得,圓心到直線的距離為,故由圖可知,當時,圓上有且僅有一個點到直線的距離等于;當時,圓上有且僅有三個點到直線的距離等于;當則的取值范圍為時,圓上有且僅有兩個點到直線的距離等于.故選:B【題目點撥】本題主要考查直線與圓的綜合問題,數(shù)學結合是解決本題的關鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)二次函數(shù)的圖象與性質,即可求得實數(shù)的取值范圍,得到答案.【題目詳解】由題意,函數(shù)表示開口向下,且對稱軸方程為的拋物線,當函數(shù)在上是減函數(shù)時,則滿足,解得,所以實數(shù)的取值范圍.故答案為:.【題目點撥】本題主要考查了二次函數(shù)的圖象與性質的應用,其中解答中熟記二次函數(shù)的圖象與性質,列出相應的不等式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.12、【解題分析】

根據(jù)已知條件,所得截面可能是三角形,也可能是六邊形,分別求出三角形與六邊形周長的取值情況,即可得到函數(shù)的值域.【題目詳解】如圖:∵正方體的棱長為,∴正方體的對角線長為6,∵(i)當或時,三角形的周長最小.設截面正三角形的邊長為,由等體積法得:∴∴,(ii)或時,三角形的周長最大,截面正三角形的邊長為,∴(iii)當時,截面六邊形的周長都為∴∴當時,函數(shù)的值域為.【題目點撥】本題考查多面體表面的截面問題和線面垂直,關鍵在于結合圖形分析截面的三種情況,進而得出與截面邊長的關系.13、9【解題分析】

分析數(shù)列的單調性,以及數(shù)列各項的取值正負,得到數(shù)列中的最大項,由此即可求解出的值.【題目詳解】因為,所以時,,時,,又因為在上遞增,在也是遞增的,所以,又因為對任意正整數(shù)都有,所以.故答案為:.【題目點撥】本題考查數(shù)列的單調性以及數(shù)列中項的正負判斷,難度一般.處理數(shù)列單調性或者最值的問題時,可以采取函數(shù)的思想來解決問題,但是要注意到數(shù)列對應的函數(shù)的定義域為.14、0.4【解題分析】

根據(jù)幾何概型的計算,反求陰影部分的面積即可.【題目詳解】設陰影部分的面積為,根據(jù)幾何概型的概率計算公式:,解得.故答案為:.【題目點撥】本題考查幾何概型的概率計算公式,屬基礎題.15、【解題分析】

根據(jù)和之間的關系,應用公式得出結果【題目詳解】當時,;當時,;∴故答案為【題目點撥】本題考查了和之間的關系式,注意當和時要分開討論,題中的數(shù)列非等差數(shù)列.本題屬于基礎題16、【解題分析】

將看作是關于的直線方程,則表示點到點的距離的平方,根據(jù)距離公式可求出點到直線的距離最小,再結合對勾函數(shù)的單調性,可求出最小值。【題目詳解】將看作是關于的直線方程,表示點與點之間距離的平方,點到直線的距離為,又因為,令,在上單調遞增,所以,所以的最小值為.【題目點撥】本題主要考查點到直線的距離公式以及對勾函數(shù)單調性的應用,意在考查學生轉化思想的的應用。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解題分析】

(Ⅰ)利用兩角和與差的正弦公式將已知兩式展開,分別作和、作差可得,,再利用,即可求出結果;(Ⅱ)由已知求得,再由,利用兩角差的余弦公式展開求解,即可求出結果.【題目詳解】解:(I)①②由①+②得③由①-②得④由③÷④得(II)∵,,【題目點撥】本題主要考查了兩角和差的正余弦公式在三角函數(shù)化簡求值中的應用,考查了計算能力和轉化思想,屬于中檔題.18、(1)x2【解題分析】

(1)根據(jù)三角形周長為1,結合橢圓的定義可知,4a=8,利用e=ca=1-b2a2=12,即可求得a和b的值,求得橢圓方程;(2)分類討論,當直線斜率斜存在時,聯(lián)立y=kx+b【題目詳解】(1)由題意知,4a=1,則a=2,由橢圓離心率e=ca=∴橢圓C的方程x2(2)由題意,當直線AB的斜率不存在,此時可設A(x3,x3),B(x3,-x3).又A,B兩點在橢圓C上,∴x0∴點O到直線AB的距離d=12當直線AB的斜率存在時,設直線AB的方程為y=kx+b.設A(x1,y1),B(x2,y2)聯(lián)立方程y=kx+bx24+y23由已知△>3,x1+x2=-8kb3+4k2,x1x由OA⊥OB,則x1x2+y1y2=3,即x1x2+(kx1+b)(kx2+b)=3,整理得:(k2+1)x1x2+kb(x1+x2)+b2=3,∴(k∴7b2=12(k2+1),滿足△>3.∴點O到直線AB的距離d=b綜上可知:點O到直線AB的距離d=221【題目點撥】本題主要考查橢圓的定義及橢圓標準方程、圓錐曲線的定值問題以及點到直線的距離公式,屬于難題.探索圓錐曲線的定值問題常見方法有兩種:①從特殊入手,先根據(jù)特殊位置和數(shù)值求出定值,再證明這個值與變量無關;②直接推理、計算,并在計算推理的過程中消去變量,從而得到定值.19、(1)見證明;(2)4【解題分析】

(1)取的三等分點,使,證四邊形為平行四邊形,運用線面平行判定定理證明.(2)三棱錐的體積可以用求出結果.【題目詳解】(1)證明:取的三等分點,使,連接,.因為,,所以,.因為,,所以,,所以四邊形為平行四邊形,所以,因為平面,平面,所以平面.(2)解:因為,,所以的面積為,因為底面,所以三棱錐的高為,所以三棱錐的體積為.因為,所以三棱錐的高為,所以三棱錐的體積為,故三棱錐的體積為.【題目點撥】本題考查了線面平行的判定定理、三棱錐體積的計算,在證明線面平行時需要構造平行四邊形來證明,三棱錐的體積計算可以選用割、補等方法.20、(Ⅰ);(Ⅱ)【解題分析】

(Ⅰ)通過正弦定理易得,代入即可.(Ⅱ)三邊長知道通過余弦定理即可求得的大?。绢}目詳解】(Ⅰ)因為,所以由正弦定理可得.因為,所以.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論