基于BP神經(jīng)網(wǎng)絡(luò)逼近函數(shù)_第1頁
基于BP神經(jīng)網(wǎng)絡(luò)逼近函數(shù)_第2頁
基于BP神經(jīng)網(wǎng)絡(luò)逼近函數(shù)_第3頁
基于BP神經(jīng)網(wǎng)絡(luò)逼近函數(shù)_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

用神經(jīng)網(wǎng)絡(luò)擬合一個(gè)非線性函數(shù)姓名:李海浪班級(jí):10級(jí)自動(dòng)化3班學(xué)號(hào):P101813479基于BP神經(jīng)網(wǎng)絡(luò)逼近函數(shù)假設(shè)頻率參數(shù)k=1,繪制要逼近的非線性函數(shù)的曲線。函數(shù)的曲線如圖1所示.MATLAB程序如下:k=1;p=[0:0.05:10];t=sin(k*pi/4*p);plot(p,t);title('要逼近的正弦函數(shù)');xlabel('時(shí)間');ylabel(正弦波函數(shù)');圖1要逼近的正弦函數(shù)曲線建立網(wǎng)絡(luò)應(yīng)用newff()函數(shù)建立BP網(wǎng)絡(luò)結(jié)構(gòu)。隱層神經(jīng)元數(shù)目n可以改變,暫設(shè)為n=3,輸出層有一個(gè)神經(jīng)元。選擇隱層和輸出層神經(jīng)元傳遞函數(shù)分別為tansig函數(shù)和purelin函數(shù),網(wǎng)絡(luò)訓(xùn)練的算法采用Levenberg–Marquardt算法trainlm。NATLAB程序如下:n=3;net=newff(minmax(p),[n,1],{'tansig''purelin'},'trainlm');y1=sim(net,p);figure;plot(p,t,'-',p,y1,':')title('未訓(xùn)練網(wǎng)絡(luò)的輸出結(jié)果');xlabel('時(shí)間');ylabel('仿真輸出--原函數(shù)');同時(shí)繪制網(wǎng)絡(luò)輸出曲線,并與原函數(shù)相比較,結(jié)果如圖2所示。圖2未訓(xùn)練網(wǎng)絡(luò)的輸出結(jié)果“”代表要逼近的非線性函數(shù)曲線;“‥‥”代表未經(jīng)訓(xùn)練的函數(shù)曲線;因?yàn)槭褂胣ewff()函數(shù)建立函數(shù)網(wǎng)絡(luò)時(shí),權(quán)值和閾值的初始化是隨機(jī)的,所以網(wǎng)絡(luò)輸出結(jié)構(gòu)很差,根本達(dá)不到函數(shù)逼近的目的,每次運(yùn)行的結(jié)果也有時(shí)不同。3.網(wǎng)絡(luò)訓(xùn)練應(yīng)用train()函數(shù)對(duì)網(wǎng)絡(luò)進(jìn)行訓(xùn)練之前,需要預(yù)先設(shè)置網(wǎng)絡(luò)訓(xùn)練參數(shù)。將訓(xùn)練時(shí)間設(shè)置為50,訓(xùn)練精度設(shè)置為0.01,其余參數(shù)使用缺省值。訓(xùn)練后得到的誤差變化過程如圖3所示。圖3訓(xùn)練過程net.trainParam.epochs=50;net.trainParam.goal=0.01;net=train(net,p,t);TRAINLM-calcjx,Epoch0/50,MSE9.27774/0.01,Gradient13.3122/1e-010TRAINLM-calcjx,Epoch3/50,MSE0.00127047/0.01,Gradient0.0337555/1e-010TRAINLM,Performancegoalmet.從以上結(jié)果可以看出,網(wǎng)絡(luò)訓(xùn)練速度很快,經(jīng)過一次循環(huán)跌送過程就達(dá)到了要求的精度0.01。4.網(wǎng)絡(luò)測(cè)試對(duì)于訓(xùn)練好的網(wǎng)絡(luò)進(jìn)行仿真:MATLAB程序如下:y2=sim(net,p);figure;plot(p,t,'-',p,y1,':',p,y2,'--')title('訓(xùn)練后網(wǎng)絡(luò)的輸出結(jié)果');xlabel('時(shí)間');ylabel('仿真輸出');繪制網(wǎng)絡(luò)輸出曲線,并與原始非線性函數(shù)曲線以及未訓(xùn)練網(wǎng)絡(luò)的輸出結(jié)果曲線相比較,比較出來的結(jié)果如圖4所示。圖4訓(xùn)練后網(wǎng)絡(luò)的輸出結(jié)果“”代表要逼近的非線性函數(shù)曲線;“‥‥‥”代表未經(jīng)訓(xùn)練的函數(shù)曲線;“―――”

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論