2018全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)新課標(biāo)I卷解析版_第1頁(yè)
2018全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)新課標(biāo)I卷解析版_第2頁(yè)
2018全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)新課標(biāo)I卷解析版_第3頁(yè)
2018全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)新課標(biāo)I卷解析版_第4頁(yè)
2018全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)新課標(biāo)I卷解析版_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

./絕密★啟用前2018年普通高等學(xué)校招生全國(guó)統(tǒng)一考試文科數(shù)學(xué)注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名和準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑。如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上。寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,則A.B.C.D.[答案]A[解析]分析:利用集合的交集中元素的特征,結(jié)合題中所給的集合中的元素,求得集合中的元素,最后求得結(jié)果.詳解:根據(jù)集合交集中元素的特征,可以求得,故選A.點(diǎn)睛:該題考查的是有關(guān)集合的運(yùn)算的問(wèn)題,在解題的過(guò)程中,需要明確交集中元素的特征,從而求得結(jié)果.2.設(shè),則A.0B.C.D.[答案]C[解析]分析:首先根據(jù)復(fù)數(shù)的運(yùn)算法則,將其化簡(jiǎn)得到,根據(jù)復(fù)數(shù)模的公式,得到,從而選出正確結(jié)果.詳解:因?yàn)?所以,故選C.點(diǎn)睛:該題考查的是有關(guān)復(fù)數(shù)的運(yùn)算以及復(fù)數(shù)模的概念及求解公式,利用復(fù)數(shù)的除法及加法運(yùn)算法則求得結(jié)果,屬于簡(jiǎn)單題目.3.某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:學(xué)§科§網(wǎng)...學(xué)§科§網(wǎng)...學(xué)§科§網(wǎng)...學(xué)§科§網(wǎng)...學(xué)§科§網(wǎng)...學(xué)§科§網(wǎng)...學(xué)§科§網(wǎng)...學(xué)§科§網(wǎng)...學(xué)§科§網(wǎng)...則下面結(jié)論中不正確的是A.新農(nóng)村建設(shè)后,種植收入減少B.新農(nóng)村建設(shè)后,其他收入增加了一倍以上C.新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍D.新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半[答案]A[解析]分析:首先設(shè)出新農(nóng)村建設(shè)前的經(jīng)濟(jì)收入為M,根據(jù)題意,得到新農(nóng)村建設(shè)后的經(jīng)濟(jì)收入為2M,之后從圖中各項(xiàng)收入所占的比例,得到其對(duì)應(yīng)的收入是多少,從而可以比較其大小,并且得到其相應(yīng)的關(guān)系,從而得出正確的選項(xiàng).詳解:設(shè)新農(nóng)村建設(shè)前的收入為M,而新農(nóng)村建設(shè)后的收入為2M,則新農(nóng)村建設(shè)前種植收入為0.6M,而新農(nóng)村建設(shè)后的種植收入為0.74M,所以種植收入增加了,所以A項(xiàng)不正確;新農(nóng)村建設(shè)前其他收入我0.04M,新農(nóng)村建設(shè)后其他收入為0.1M,故增加了一倍以上,所以B項(xiàng)正確;新農(nóng)村建設(shè)前,養(yǎng)殖收入為0.3M,新農(nóng)村建設(shè)后為0.6M,所以增加了一倍,所以C項(xiàng)正確;新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的綜合占經(jīng)濟(jì)收入的,所以超過(guò)了經(jīng)濟(jì)收入的一半,所以D正確;故選A.點(diǎn)睛:該題考查的是有關(guān)新農(nóng)村建設(shè)前后的經(jīng)濟(jì)收入的構(gòu)成比例的餅形圖,要會(huì)從圖中讀出相應(yīng)的信息即可得結(jié)果.4.已知橢圓:的一個(gè)焦點(diǎn)為,則的離心率為A.B.C.D.[答案]C[解析]分析:首先根據(jù)題中所給的條件橢圓的一個(gè)焦點(diǎn)為,從而求得,再根據(jù)題中所給的方程中系數(shù),可以得到,利用橢圓中對(duì)應(yīng)的關(guān)系,求得,最后利用橢圓離心率的公式求得結(jié)果.詳解:根據(jù)題意,可知,因?yàn)?所以,即,所以橢圓的離心率為,故選C.點(diǎn)睛:該題考查的是有關(guān)橢圓的離心率的問(wèn)題,在求解的過(guò)程中,一定要注意離心率的公式,再者就是要學(xué)會(huì)從題的條件中判斷與之相關(guān)的量,結(jié)合橢圓中的關(guān)系求得結(jié)果.5.已知圓柱的上、下底面的中心分別為,,過(guò)直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為A.B.C.D.[答案]B[解析]分析:首先根據(jù)正方形的面積求得正方形的邊長(zhǎng),從而進(jìn)一步確定圓柱的底面圓半徑與圓柱的高,從而利用相關(guān)公式求得圓柱的表面積.詳解:根據(jù)題意,可得截面是邊長(zhǎng)為的正方形,結(jié)合圓柱的特征,可知該圓柱的底面為半徑是的圓,且高為,所以其表面積為,故選B.點(diǎn)睛:該題考查的是有關(guān)圓柱的表面積的求解問(wèn)題,在解題的過(guò)程中,需要利用題的條件確定圓柱的相關(guān)量,即圓柱的底面圓的半徑以及圓柱的高,在求圓柱的表面積的時(shí)候,一定要注意是兩個(gè)底面圓與側(cè)面積的和.6.設(shè)函數(shù).若為奇函數(shù),則曲線在點(diǎn)處的切線方程為A.B.C.D.[答案]D[解析]分析:利用奇函數(shù)偶此項(xiàng)系數(shù)為零求得,進(jìn)而得到的解析式,再對(duì)求導(dǎo)得出切線的斜率,進(jìn)而求得切線方程.詳解:因?yàn)楹瘮?shù)是奇函數(shù),所以,解得,所以,,所以,所以曲線在點(diǎn)處的切線方程為,化簡(jiǎn)可得,故選D.點(diǎn)睛:該題考查的是有關(guān)曲線在某個(gè)點(diǎn)處的切線方程的問(wèn)題,在求解的過(guò)程中,首先需要確定函數(shù)解析式,此時(shí)利用到結(jié)論多項(xiàng)式函數(shù)中,奇函數(shù)不存在偶次項(xiàng),偶函數(shù)不存在奇次項(xiàng),從而求得相應(yīng)的參數(shù)值,之后利用求導(dǎo)公式求得,借助于導(dǎo)數(shù)的幾何意義,結(jié)合直線方程的點(diǎn)斜式求得結(jié)果.7.在△中,為邊上的中線,為的中點(diǎn),則A.B.C.D.[答案]A[解析]分析:首先將圖畫出來(lái),接著應(yīng)用三角形中線向量的特征,求得,之后應(yīng)用向量的加法運(yùn)算法則三角形法則,得到,之后將其合并,得到,下一步應(yīng)用相反向量,求得,從而求得結(jié)果.詳解:根據(jù)向量的運(yùn)算法則,可得,所以,故選A.點(diǎn)睛:該題考查的是有關(guān)平面向量基本定理的有關(guān)問(wèn)題,涉及到的知識(shí)點(diǎn)有三角形的中線向量、向量加法的三角形法則、共線向量的表示以及相反向量的問(wèn)題,在解題的過(guò)程中,需要認(rèn)真對(duì)待每一步運(yùn)算.8.已知函數(shù),則A.的最小正周期為π,最大值為3B.的最小正周期為π,最大值為4C.的最小正周期為,最大值為3D.的最小正周期為,最大值為4[答案]B[解析]分析:首先利用余弦的倍角公式,對(duì)函數(shù)解析式進(jìn)行化簡(jiǎn),將解析式化簡(jiǎn)為,之后應(yīng)用余弦型函數(shù)的性質(zhì)得到相關(guān)的量,從而得到正確選項(xiàng).詳解:根據(jù)題意有,所以函數(shù)的最小正周期為,且最大值為,故選B.點(diǎn)睛:該題考查的是有關(guān)化簡(jiǎn)三角函數(shù)解析式,并且通過(guò)余弦型函數(shù)的相關(guān)性質(zhì)得到函數(shù)的性質(zhì),在解題的過(guò)程中,要注意應(yīng)用余弦倍角公式將式子降次升角,得到最簡(jiǎn)結(jié)果.9.某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如右圖.圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長(zhǎng)度為A.B.C.D.2[答案]B[解析]分析:首先根據(jù)題中所給的三視圖,得到點(diǎn)M和點(diǎn)N在圓柱上所處的位置,點(diǎn)M在上底面上,點(diǎn)N在下底面上,并且將圓柱的側(cè)面展開圖平鋪,點(diǎn)M、N在其四分之一的矩形的對(duì)角線的端點(diǎn)處,根據(jù)平面上兩點(diǎn)間直線段最短,利用勾股定理,求得結(jié)果.詳解:根據(jù)圓柱的三視圖以及其本身的特征,可以確定點(diǎn)M和點(diǎn)N分別在以圓柱的高為長(zhǎng)方形的寬,圓柱底面圓周長(zhǎng)的四分之一為長(zhǎng)的長(zhǎng)方形的對(duì)角線的端點(diǎn)處,所以所求的最短路徑的長(zhǎng)度為,故選B.點(diǎn)睛:該題考查的是有關(guān)幾何體的表面上兩點(diǎn)之間的最短距離的求解問(wèn)題,在解題的過(guò)程中,需要明確兩個(gè)點(diǎn)在幾何體上所處的位置,再利用平面上兩點(diǎn)間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.10.在長(zhǎng)方體中,,與平面所成的角為,則該長(zhǎng)方體的體積為A.B.C.D.[答案]C[解析]分析:首先畫出長(zhǎng)方體,利用題中條件,得到,根據(jù),求得,可以確定,之后利用長(zhǎng)方體的體積公式詳解:在長(zhǎng)方體中,連接,根據(jù)線面角的定義可知,因?yàn)?所以,從而求得,所以該長(zhǎng)方體的體積為,故選C.點(diǎn)睛:該題考查的是長(zhǎng)方體的體積的求解問(wèn)題,在解題的過(guò)程中,需要明確長(zhǎng)方體的體積公式為長(zhǎng)寬高的乘積,而題中的條件只有兩個(gè)值,所以利用題中的條件求解另一條邊的長(zhǎng)久顯得尤為重要,此時(shí)就需要明確線面角的定義,從而得到量之間的關(guān)系,從而求得結(jié)果.11.已知角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊上有兩點(diǎn),,且,則A.B.C.D.[答案]B[解析]分析:首先根據(jù)兩點(diǎn)都在角的終邊上,得到,利用,利用倍角公式以及余弦函數(shù)的定義式,求得,從而得到,再結(jié)合,從而得到,從而確定選項(xiàng).詳解:根據(jù)題的條件,可知三點(diǎn)共線,從而得到,因?yàn)?解得,即,所以,故選B.點(diǎn)睛:該題考查的是有關(guān)角的終邊上點(diǎn)的縱坐標(biāo)的差值的問(wèn)題,涉及到的知識(shí)點(diǎn)有共線的點(diǎn)的坐標(biāo)的關(guān)系,余弦的倍角公式,余弦函數(shù)的定義式,根據(jù)題中的條件,得到相應(yīng)的等量關(guān)系式,從而求得結(jié)果.12.設(shè)函數(shù),則滿足的x的取值范圍是A.B.C.D.[答案]D[解析]分析:首先根據(jù)題中所給的函數(shù)解析式,將函數(shù)圖像畫出來(lái),從圖中可以發(fā)現(xiàn)若有成立,一定會(huì)有,從而求得結(jié)果.詳解:將函數(shù)的圖像畫出來(lái),觀察圖像可知會(huì)有,解得,所以滿足的x的取值范圍是,故選D.點(diǎn)睛:該題考查的是有關(guān)通過(guò)函數(shù)值的大小來(lái)推斷自變量的大小關(guān)系,從而求得相關(guān)的參數(shù)的值的問(wèn)題,在求解的過(guò)程中,需要利用函數(shù)解析式畫出函數(shù)圖像,從而得到要出現(xiàn)函數(shù)值的大小,絕對(duì)不是常函數(shù),從而確定出自變量的所處的位置,結(jié)合函數(shù)值的大小,確定出自變量的大小,從而得到其等價(jià)的不等式組,從而求得結(jié)果.二、填空題〔本題共4小題,每小題5分,共20分13.已知函數(shù),若,則________.[答案]-7[解析]分析:首先利用題的條件,將其代入解析式,得到,從而得到,從而求得,得到答案.詳解:根據(jù)題意有,可得,所以,故答案是.點(diǎn)睛:該題考查的是有關(guān)已知某個(gè)自變量對(duì)應(yīng)函數(shù)值的大小,來(lái)確定有關(guān)參數(shù)值的問(wèn)題,在求解的過(guò)程中,需要將自變量代入函數(shù)解析式,求解即可得結(jié)果,屬于基礎(chǔ)題目.14.若滿足約束條件,則的最大值為________.[答案]6[解析]分析:首先根據(jù)題中所給的約束條件,畫出相應(yīng)的可行域,再將目標(biāo)函數(shù)化成斜截式,之后在圖中畫出直線,在上下移動(dòng)的過(guò)程中,結(jié)合的幾何意義,可以發(fā)現(xiàn)直線過(guò)B點(diǎn)時(shí)取得最大值,聯(lián)立方程組,求得點(diǎn)B的坐標(biāo)代入目標(biāo)函數(shù)解析式,求得最大值.詳解:根據(jù)題中所給的約束條件,畫出其對(duì)應(yīng)的可行域,如圖所示:由可得,畫出直線,將其上下移動(dòng),結(jié)合的幾何意義,可知當(dāng)直線過(guò)點(diǎn)B時(shí),z取得最大值,由,解得,此時(shí),故答案為6.點(diǎn)睛:該題考查的是有關(guān)線性規(guī)劃的問(wèn)題,在求解的過(guò)程中,首先需要正確畫出約束條件對(duì)應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個(gè)點(diǎn)是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.15.直線與圓交于兩點(diǎn),則________.[答案][解析]分析:首先將圓的一般方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,得到圓心坐標(biāo)和圓的半徑的大小,之后應(yīng)用點(diǎn)到直線的距離求得弦心距,借助于圓中特殊三角形半弦長(zhǎng)、弦心距和圓的半徑構(gòu)成直角三角形,利用勾股定理求得弦長(zhǎng).詳解:根據(jù)題意,圓的方程可化為,所以圓的圓心為,且半徑是2,根據(jù)點(diǎn)到直線的距離公式可以求得,結(jié)合圓中的特殊三角形,可知,故答案為.點(diǎn)睛:該題考查的是有關(guān)直線被圓截得的弦長(zhǎng)問(wèn)題,在解題的過(guò)程中,熟練應(yīng)用圓中的特殊三角形半弦長(zhǎng)、弦心距和圓的半徑構(gòu)成的直角三角形,借助于勾股定理求得結(jié)果.16.△的內(nèi)角的對(duì)邊分別為,已知,,則△的面積為________.[答案][解析]分析:首先利用正弦定理將題中的式子化為,化簡(jiǎn)求得,利用余弦定理,結(jié)合題中的條件,可以得到,可以斷定A為銳角,從而求得,進(jìn)一步求得,利用三角形面積公式求得結(jié)果.詳解:根據(jù)題意,結(jié)合正弦定理可得,即,結(jié)合余弦定理可得,所以A為銳角,且,從而求得,所以△的面積為,故答案是.點(diǎn)睛:該題考查的是三角形面積的求解問(wèn)題,在解題的過(guò)程中,注意對(duì)正余弦定理的熟練應(yīng)用,以及通過(guò)隱含條件確定角為銳角,借助于余弦定理求得,利用面積公式求得結(jié)果.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。第17~21題為必考題,每個(gè)試題考生都必須作答。第22、23題為選考題,考生根據(jù)要求作答?!惨槐乜碱}:共60分。17.已知數(shù)列滿足,,設(shè).〔1求;〔2判斷數(shù)列是否為等比數(shù)列,并說(shuō)明理由;〔3求的通項(xiàng)公式.[答案]<1>b1=1,b2=2,b3=4.<2>{bn}是首項(xiàng)為1,公比為2的等比數(shù)列.理由見(jiàn)解析.<3>an=n·2n-1.[解析]分析:<1>根據(jù)題中條件所給的數(shù)列的遞推公式,將其化為an+1=,分別令n=1和n=2,代入上式求得a2=4和a3=12,再利用,從而求得b1=1,b2=2,b3=4.<2>利用條件可以得到,從而可以得出bn+1=2bn,這樣就可以得到數(shù)列{bn}是首項(xiàng)為1,公比為2的等比數(shù)列.<3>借助等比數(shù)列的通項(xiàng)公式求得,從而求得an=n·2n-1.詳解:〔1由條件可得an+1=.將n=1代入得,a2=4a1,而a1=1,所以,a2=4.將n=2代入得,a3=3a2,所以,a3=12.從而b1=1,b2=2,b3=4.〔2{bn}是首項(xiàng)為1,公比為2的等比數(shù)列.由條件可得,即bn+1=2bn,又b1=1,所以{bn}是首項(xiàng)為1,公比為2的等比數(shù)列.〔3由〔2可得,所以an=n·2n-1.點(diǎn)睛:該題考查的是有關(guān)數(shù)列的問(wèn)題,涉及到的知識(shí)點(diǎn)有根據(jù)數(shù)列的遞推公式確定數(shù)列的項(xiàng),根據(jù)不同數(shù)列的項(xiàng)之間的關(guān)系,確定新數(shù)列的項(xiàng),利用遞推關(guān)系整理得到相鄰兩項(xiàng)之間的關(guān)系確定數(shù)列是等比數(shù)列,根據(jù)等比數(shù)列通項(xiàng)公式求得數(shù)列的通項(xiàng)公式,借助于的通項(xiàng)公式求得數(shù)列的通項(xiàng)公式,從而求得最后的結(jié)果.18.如圖,在平行四邊形中,,,以為折痕將△折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.〔1證明:平面平面;〔2為線段上一點(diǎn),為線段上一點(diǎn),且,求三棱錐的體積.[答案]<1>見(jiàn)解析.<2>1.[解析]分析:<1>首先根據(jù)題的條件,可以得到=90,即,再結(jié)合已知條件BA⊥AD,利用線面垂直的判定定理證得AB⊥平面ACD,又因?yàn)锳B平面ABC,根據(jù)面面垂直的判定定理,證得平面ACD⊥平面ABC;<2>根據(jù)已知條件,求得相關(guān)的線段的長(zhǎng)度,根據(jù)第一問(wèn)的相關(guān)垂直的條件,求得三棱錐的高,之后借助于三棱錐的體積公式求得三棱錐的體積.詳解:〔1由已知可得,=90°,.又BA⊥AD,且,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.〔2由已知可得,DC=CM=AB=3,DA=.又,所以.作QE⊥AC,垂足為E,則.由已知及〔1可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱錐的體積為.點(diǎn)睛:該題考查的是有關(guān)立體幾何的問(wèn)題,涉及到的知識(shí)點(diǎn)有面面垂直的判定以及三棱錐的體積的求解,在解題的過(guò)程中,需要清楚題中的有關(guān)垂直的直線的位置,結(jié)合線面垂直的判定定理證得線面垂直,之后應(yīng)用面面垂直的判定定理證得面面垂直,需要明確線線垂直、線面垂直和面面垂直的關(guān)系,在求三棱錐的體積的時(shí)候,注意應(yīng)用體積公式求解即可.19.某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)〔單位:m3和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表日用水量頻數(shù)13249265使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表日用水量頻數(shù)151310165〔1在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:〔2估計(jì)該家庭使用節(jié)水龍頭后,日用水量小于0.35m3的概率;〔3估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?〔一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表.[答案]<1>直方圖見(jiàn)解析.<2>0.48.<3>.[解析]分析:<1>根據(jù)題中所給的使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表,算出落在相應(yīng)區(qū)間上的頻率,借助于直方圖中長(zhǎng)方形的面積表示的就是落在相應(yīng)區(qū)間上的頻率,從而確定出對(duì)應(yīng)矩形的高,從而得到直方圖;<2>結(jié)合直方圖,算出日用水量小于0.35的矩形的面積總和,即為所求的頻率;<3>根據(jù)組中值乘以相應(yīng)的頻率作和求得50天日用水量的平均值,作差乘以365天得到一年能節(jié)約用水多少,從而求得結(jié)果.詳解:〔1〔2根據(jù)以上數(shù)據(jù),該家庭使用節(jié)水龍頭后50天日用水量小于0.35m3的頻率為0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此該家庭使用節(jié)水龍頭后日用水量小于0.35m3的概率的估計(jì)值為0.48.〔3該家庭未使用節(jié)水龍頭50天日用水量的平均數(shù)為.該家庭使用了節(jié)水龍頭后50天日用水量的平均數(shù)為.估計(jì)使用節(jié)水龍頭后,一年可節(jié)省水.點(diǎn)睛:該題考查的是有關(guān)統(tǒng)計(jì)的問(wèn)題,涉及到的知識(shí)點(diǎn)有頻率分布直方圖的繪制、利用頻率分布直方圖計(jì)算變量落在相應(yīng)區(qū)間上的概率、利用頻率分布直方圖求平均數(shù),在解題的過(guò)程中,需要認(rèn)真審題,細(xì)心運(yùn)算,仔細(xì)求解,就可以得出正確結(jié)果.20.設(shè)拋物線,點(diǎn),,過(guò)點(diǎn)的直線與交于,兩點(diǎn).〔1當(dāng)與軸垂直時(shí),求直線的方程;〔2證明:.[答案]<1>y=或.<2>見(jiàn)解析.[解析]分析:<1>首先根據(jù)與軸垂直,且過(guò)點(diǎn),求得直線l的方程為x=1,代入拋物線方程求得點(diǎn)M的坐標(biāo)為或,利用兩點(diǎn)式求得直線的方程;<2>分直線l與x軸垂直、l與x軸不垂直兩種情況證明,特殊情況比較簡(jiǎn)單,也比較直觀,對(duì)于一般情況將角相等通過(guò)直線的斜率的關(guān)系來(lái)體現(xiàn),從而證得結(jié)果.詳解:〔1當(dāng)l與x軸垂直時(shí),l的方程為x=2,可得M的坐標(biāo)為〔2,2或〔2,–2.所以直線BM的方程為y=或.〔2當(dāng)l與x軸垂直時(shí),AB為MN的垂直平分線,所以∠ABM=∠ABN.當(dāng)l與x軸不垂直時(shí),設(shè)l的方程為,M〔x1,y1,N〔x2,y2,則x1>0,x2>0.由得ky2–2y–4k=0,可知y1+y2=,y1y2=–4.直線BM,BN的斜率之和為.①將,及y1+y2,y1y2的表達(dá)式代入①式分子,可得.所以kBM+kBN=0,可知BM,BN的傾斜角互補(bǔ),所以∠ABM+∠ABN.綜上,∠ABM=∠ABN.點(diǎn)睛:該題考查的是有關(guān)直線與拋物線的問(wèn)題,涉及到的知識(shí)點(diǎn)有直線方程的兩點(diǎn)式、直線與拋物線相交的綜合問(wèn)題、關(guān)于角的大小用斜率來(lái)衡量,在解題的過(guò)程中,第一問(wèn)求直線方程的時(shí)候,需要注意方法比較簡(jiǎn)單,需要注意的就是應(yīng)該是兩個(gè),關(guān)于第二問(wèn),在做題的時(shí)候需要先將特殊情況說(shuō)明,一般情況下,涉及到直線與曲線相交都需要聯(lián)立方程組,之后韋達(dá)定理寫出兩根和與兩根積,借助于斜率的關(guān)系來(lái)得到角是相等的結(jié)論.21.已知函數(shù).〔1設(shè)是的極值點(diǎn).求,并求的單調(diào)區(qū)間;〔2證明:當(dāng)時(shí),.[答案]<1>a=;f〔x在〔0,2單調(diào)遞減,在〔2,+∞單調(diào)遞增.<2>證明見(jiàn)解析.[解析]分析:<1>先確定函數(shù)的定義域,對(duì)函數(shù)求導(dǎo),利用f′〔2=0,求得a=,從而確定出函數(shù)的解析式,之后觀察導(dǎo)函數(shù)的解析式,結(jié)合極值點(diǎn)的位置,從而得到函數(shù)的增區(qū)間和減區(qū)間;<2>結(jié)合指數(shù)函數(shù)的值域,可以確定當(dāng)a≥時(shí),f〔x≥,之后構(gòu)造新函數(shù)g〔x=,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得g〔x≥g〔1=0,利用不等式的傳遞性,證得結(jié)果.詳解:〔1f〔x的定義域?yàn)?f′〔x=aex–.由題設(shè)知,f′〔2=0,所以a=.從而f〔x=,f′〔x=.當(dāng)0<x<2時(shí),f′〔x<0;當(dāng)x>2時(shí),f′〔x>0.所以f〔x在〔0,2單調(diào)遞減,在〔2,+∞單調(diào)遞增.〔2當(dāng)a≥時(shí),f〔x≥.設(shè)g〔x=,則當(dāng)0<x<1時(shí),g′〔x<0;當(dāng)x>1時(shí),g′〔x>0.所以x=1是g〔x的最小值點(diǎn).故當(dāng)x>0時(shí),g〔x≥g〔1=0.因此,當(dāng)時(shí),.點(diǎn)睛:該題考查的是有關(guān)導(dǎo)數(shù)的應(yīng)用問(wèn)題,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值、導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系以及證明不等式問(wèn)題,在解題的過(guò)程中,首先要保證函數(shù)的生存權(quán),先確定函數(shù)的定義域,之后根據(jù)導(dǎo)數(shù)與極值的關(guān)系求得參數(shù)值,之后利用極值的特點(diǎn),確定出函數(shù)的單調(diào)區(qū)間,第二問(wèn)在求解的時(shí)候構(gòu)造新函數(shù),應(yīng)用不等式的傳遞性證得結(jié)果.〔二選考題:共10分。請(qǐng)考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計(jì)分。22.[選修4—4:坐標(biāo)系與參數(shù)方程]在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.〔1求的直角坐標(biāo)方程;〔2若與有且僅有三個(gè)公共點(diǎn),求的方程.[答案][選修4-4:坐標(biāo)系與參數(shù)方程]解:〔1由,得的直角坐標(biāo)方程為.〔2由〔1知是圓心為,半徑為的圓.由題設(shè)知,是過(guò)點(diǎn)且關(guān)于軸對(duì)稱的兩條射線.記軸右邊的射線為,軸左邊的射線為.由于在圓的外面,故與有且僅有三個(gè)公共點(diǎn)等價(jià)于與只有一個(gè)公共點(diǎn)且與有兩個(gè)公共點(diǎn),或與只有一個(gè)公共點(diǎn)且與有兩個(gè)公共點(diǎn).當(dāng)與只有一個(gè)公共點(diǎn)時(shí),到所在直線的距離為,所以,故或.經(jīng)檢驗(yàn),當(dāng)時(shí),與沒(méi)有公共點(diǎn);當(dāng)時(shí),與只有一個(gè)公共點(diǎn),與有兩個(gè)公共點(diǎn).當(dāng)與只有一個(gè)公共點(diǎn)時(shí),到所在直線的距離為,所以,故或.經(jīng)檢驗(yàn),

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論