2024屆甘肅省隴南市數(shù)學(xué)高一第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2024屆甘肅省隴南市數(shù)學(xué)高一第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2024屆甘肅省隴南市數(shù)學(xué)高一第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2024屆甘肅省隴南市數(shù)學(xué)高一第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2024屆甘肅省隴南市數(shù)學(xué)高一第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆甘肅省隴南市數(shù)學(xué)高一第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線l1:ax+2y+8=0與l2:x+(a-1)y+a2-1=0平行,則實數(shù)a的取值是()A.-1或2 B.-1 C.0或1 D.22.設(shè)為直線,是兩個不同的平面,下列說法中正確的是()A.若,則B.若,則C.若,則D.若,則3.在中,(,,分別為角、、的對邊),則的形狀為()A.等邊三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形4.已知均為銳角,,則=A. B. C. D.5.在直角中,三條邊恰好為三個連續(xù)的自然數(shù),以三個頂點為圓心的扇形的半徑為1,若在中隨機地選取個點,其中有個點正好在扇形里面,則用隨機模擬的方法得到的圓周率的近似值為()A. B. C. D.6.菱形ABCD,E是AB邊靠近A的一個三等分點,DE=4,則菱形ABCD面積最大值為()A.36 B.18 C.12 D.97.不等式的解集為,則的值為(

)A. B.C. D.8.直線是圓在處的切線,點是圓上的動點,則點到直線的距離的最小值等于()A.1 B. C. D.29.在中,內(nèi)角所對的邊分別為.若,則角的值為()A. B. C. D.10.已知α、β為銳角,cosα=,tan(α?β)=?,則tanβ=()A. B.3 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列是等差數(shù)列,記數(shù)列的前項和為,若,則________.12.已知函數(shù)f(n)=n2cos(nπ),且an=f(n)+f(n+1),則a1+a2+a3+…+a100=_______13.執(zhí)行如圖所示的程序框圖,則輸出結(jié)果_____.14.已知向量,若,則________.15.如圖,在水平放置的邊長為1的正方形中隨機撤1000粒豆子,有400粒落到心形陰影部分上,據(jù)此估計心形陰影部分的面積為_________.16.函數(shù)的值域是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.三個內(nèi)角A,B,C對應(yīng)的三條邊長分別是,且滿足.(1)求角的大??;(2)若,,求.18.某購物中心舉行抽獎活動,顧客從裝有編號分別為0,1,2,3四個球的抽獎箱中,每次取出1個球,記下編號后放回,連續(xù)取兩次(假設(shè)取到任何一個小球的可能性相同).若取出的兩個小球號碼相加之和等于5,則中一等獎;若取出的兩個小球號碼相加之和等于4,則中二等獎;若取出的兩個小球號碼相加之和等于3,則中三等獎;其它情況不中獎.(Ⅰ)求顧客中三等獎的概率;(Ⅱ)求顧客未中獎的概率.19.制訂投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙項目可能的最大盈利分別為和,可能的最大虧損率分別為和.投資人計劃投資金額不超過億元,要求確??赡艿馁Y金虧損不超過億元,問投資人對甲、乙兩個項目各投資多少億元,才能使可能的盈利最大?20.已知數(shù)列的前項和為,滿足且,數(shù)列的前項為,滿足(Ⅰ)設(shè),求證:數(shù)列為等比數(shù)列;(Ⅱ)求的通項公式;(Ⅲ)若對任意的恒成立,求實數(shù)的最大值.21.設(shè)數(shù)列滿足.(1)求的通項公式;(2)求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

【題目詳解】,選A.【題目點撥】本題考查由兩直線平行求參數(shù).2、C【解題分析】

畫出長方體,按照選項的內(nèi)容在長方體中找到相應(yīng)的情況,即可得到答案【題目詳解】對于選項A,在長方體中,任何一條棱都和它相對的兩個平面平行,但這兩個平面相交,所以A不正確;對于選項B,若,分別是長方體的上、下底面,在下底面所在平面中任選一條直線,都有,但,所以B不正確;對于選項D,在長方體中,令下底面為,左邊側(cè)面為,此時,在右邊側(cè)面中取一條對角線,則,但與不垂直,所以D不正確;對于選項C,設(shè)平面,且,因為,所以,又,所以,又,所以,所以C正確.【題目點撥】本題考查直線與平面的位置關(guān)系,屬于簡單題3、B【解題分析】

利用二倍角公式,正弦定理,結(jié)合和差公式化簡等式得到,得到答案.【題目詳解】故答案選B【題目點撥】本題考查了正弦定理,和差公式,意在考查學(xué)生的綜合應(yīng)用能力.4、A【解題分析】因為,所以,又,所以,則;因為且,所以,又,所以;則====;故選A.點睛:三角函數(shù)式的化簡要遵循“三看”原則(1)一看“角”,這是最重要的一環(huán),通過看角之間的區(qū)別和聯(lián)系,把角進行合理的拆分,從而正確使用公式;(2)而看“函數(shù)名稱”看函數(shù)名稱之間的差異,從而確定使用公式,常見的有“切化弦”;(3)三看“結(jié)構(gòu)特征”,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,如“遇到分式通分”等.5、B【解題分析】由題直角中,三條邊恰好為三個連續(xù)的自然數(shù),設(shè)三邊為解得以三個頂點為圓心的扇形的面積和為由題故選B.6、B【解題分析】

設(shè)出菱形的邊長,在三角形ADE中,用余弦定理表示出cosA【題目詳解】設(shè)菱形的邊長為3a,在三角形ADE中,AD=3a,AE=a,DE=4,有余弦定理得cosA=10a2-166a故選:B【題目點撥】本小題主要考查余弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查菱形的面積公式,考查二次函數(shù)最值的求法,屬于中檔題.7、B【解題分析】

根據(jù)一元二次不等式解集與對應(yīng)一元二次方程根的關(guān)系列方程組,解得a,c的值.【題目詳解】由題意得為方程兩根,所以,選B.【題目點撥】一元二次方程的根與對應(yīng)一元二次不等式解集以及對應(yīng)二次函數(shù)零點的關(guān)系,是數(shù)形結(jié)合思想,等價轉(zhuǎn)化思想的具體體現(xiàn),注意轉(zhuǎn)化時的等價性.8、D【解題分析】

先求得切線方程,然后用點到直線距離減去半徑可得所求的最小值.【題目詳解】圓在點處的切線為,即,點是圓上的動點,圓心到直線的距離,∴點到直線的距離的最小值等于.故選D.【題目點撥】圓中的最值問題,往往轉(zhuǎn)化為圓心到幾何對象的距離的最值問題.此類問題是基礎(chǔ)題.9、C【解題分析】

根據(jù)正弦定理將邊化角,可得,由可求得,根據(jù)的范圍求得結(jié)果.【題目詳解】由正弦定理得:本題正確選項:【題目點撥】本題考查正弦定理邊角互化的應(yīng)用,涉及到兩角和差正弦公式、三角形內(nèi)角和、誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.10、B【解題分析】

利用角的關(guān)系,再利用兩角差的正切公式即可求出的值.【題目詳解】因為,且為銳角,則,所以,因為,所以故選B.【題目點撥】主要考查了兩角差的正切公式,同角三角函數(shù)的平方關(guān)系,屬于中檔題.對于給值求值問題,關(guān)鍵是尋找已知角(條件中的角)與未知角(問題中的角)的關(guān)系,用已知角表示未知角,從而將問題轉(zhuǎn)化為求已知角的三角函數(shù)值,再利用兩角和與差的三角函數(shù)公式、二倍角公式以及誘導(dǎo)公式即可求出.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解題分析】

由等差數(shù)列的求和公式和性質(zhì)可得,代入已知式子可得.【題目詳解】由等差數(shù)列的求和公式和性質(zhì)可得:=,且,∴.故答案為:1.【題目點撥】本題考查了等差數(shù)列的求和公式及性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.12、-1【解題分析】

分n為偶數(shù)和奇數(shù)求得數(shù)列的奇數(shù)項和偶數(shù)項均為等差數(shù)列,然后利用分組求和得答案.【題目詳解】若n為偶數(shù),則an=f(n)+f(n+1)=n2﹣(n+1)2=﹣(2n+1),偶數(shù)項為首項為a2=﹣5,公差為﹣4的等差數(shù)列;若n為奇數(shù),則an=f(n)+f(n+1)=﹣n2+(n+1)2=2n+1,奇數(shù)項為首項為a1=3,公差為4的等差數(shù)列.∴a1+a2+a3+…+a1=(a1+a3+…+a99)+(a2+a4+…+a1)1.故答案為:1.【題目點撥】本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓(xùn)練了等差數(shù)列前n項和的求法,是中檔題.13、1【解題分析】

弄清程序框圖的算法功能是解題關(guān)鍵.由模擬執(zhí)行程序,可知,本程序的算法功能是計算的值,依據(jù)數(shù)列求和方法——并項求和,即可求出.【題目詳解】根據(jù)程序框圖,可得程序框圖的功能是計算并輸出,輸出的為1.【題目點撥】本題主要考查了含有循環(huán)結(jié)構(gòu)的程序框圖的算法功能的理解以及數(shù)列求和的基本方法——并項求和法的應(yīng)用.正確得到程序框圖的算法功能,選擇合適的求和方法是解題的關(guān)鍵.14、【解題分析】

直接利用向量平行性質(zhì)得到答案.【題目詳解】,若故答案為【題目點撥】本題考查了向量平行的性質(zhì),屬于簡單題.15、0.4【解題分析】

根據(jù)幾何概型的計算,反求陰影部分的面積即可.【題目詳解】設(shè)陰影部分的面積為,根據(jù)幾何概型的概率計算公式:,解得.故答案為:.【題目點撥】本題考查幾何概型的概率計算公式,屬基礎(chǔ)題.16、【解題分析】

根據(jù)反余弦函數(shù)的性質(zhì),可得函數(shù)在單調(diào)遞減函數(shù),代入即可求解.【題目詳解】由題意,函數(shù)的性質(zhì),可得函數(shù)在單調(diào)遞減函數(shù),又由,所以函數(shù)在的值域為.故答案為:.【題目點撥】本題主要考查了反余弦函數(shù)的單調(diào)性的應(yīng)用,其中解答中熟記反余弦函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、⑴(2)【解題分析】

⑴由正弦定理及,得,因為,所以;⑵由余弦定理,解得【題目詳解】⑴由正弦定理得,由已知得,,因為,所以⑵由余弦定理,得即,解得或,負值舍去,所以【題目點撥】解三角形問題,常要求正確選擇正弦定理或余弦定理對三角形中的邊、角進行轉(zhuǎn)換,再進行求解,同時注意三角形當(dāng)中的邊角關(guān)系,如內(nèi)角和為180度等18、(Ⅰ);(Ⅱ).【解題分析】

(Ⅰ)利用列舉法列出所有可能,設(shè)事件為“顧客中三等獎”,的事件.由古典概型概率計算公式即可求解.(Ⅱ)先分別求得中一等獎、二等獎和三等獎的概率,根據(jù)對立事件的概率性質(zhì)即可求得未中獎的概率.【題目詳解】(Ⅰ)所有基本事件包括共16個設(shè)事件為“顧客中三等獎”,事件包含基本事件共4個,所以.(Ⅱ)由題意,中一等獎時“兩個小球號碼相加之和等于5”,這一事件包括基本事件共2個中二等獎時,“兩個小球號碼相加之和等于4”,這一事件包括基本事件共3個由(Ⅰ)可知中三等獎的概率為設(shè)事件為“顧客未中獎”則由對立事件概率的性質(zhì)可得所以未中獎的概率為.【題目點撥】本題考查了古典概型概率的計算方法,對立事件概率性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.19、投資人用億元投資甲項目,億元投資乙項目,才能在確保虧損不超過億元的前提下,使可能的盈利最大.【解題分析】

設(shè)投資人分別用億元、億元投資甲、乙兩個項目,根據(jù)題意列出變量、所滿足的約束條件和線性目標函數(shù),利用平移直線的方法得出線性目標函數(shù)取得最大值時的最優(yōu)解,并將最優(yōu)解代入線性目標函數(shù)可得出盈利的最大值,從而解答該問題.【題目詳解】設(shè)投資人分別用億元、億元投資甲、乙兩個項目,由題意知,即,目標函數(shù)為.上述不等式組表示平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.由圖可知,當(dāng)直線經(jīng)過點時,該直線在軸上截距最大,此時取得最大值,解方程組,得,所以,點的坐標為.當(dāng),時,取得最大值,此時,(億元).答:投資人用億元投資甲項目,億元投資乙項目,才能在確保虧損不超過億元的前提下,使可能的盈利最大.【題目點撥】本題考查線性規(guī)劃的實際應(yīng)用,考查利用數(shù)學(xué)知識解決實際問題,解題的關(guān)鍵就是列出變量所滿足的約束條件,并利用數(shù)形結(jié)合思想求解,考查分析問題和解決問題的能力,屬于中等題.20、(Ⅰ)見解析(Ⅱ)(Ⅲ)【解題分析】

(Ⅰ)對遞推公式變形可得,根據(jù)等比數(shù)列的定義,即可得證;(Ⅱ)化簡可得,然后再利用裂項相消法求和,即可得到結(jié)果;(Ⅲ)先求出,然后再利用分組求和求出,然后再利用分離常數(shù)法,可得,最后對進行分類討論,即可求出結(jié)果.【題目詳解】解:(Ⅰ)由得,變形為:,,且∴數(shù)列是以首項為2,公比為的等比數(shù)列(Ⅱ)由;(Ⅲ)由(Ⅰ)知數(shù)列是以首項為2,公比為的等比數(shù)列∴,于是∴=,由得從而,∴當(dāng)n為偶數(shù)時,恒成立,而,∴1當(dāng)n為奇數(shù)時,恒成立,而,∴綜上所述,,即的最大值為【題目點撥】本題考查等比數(shù)列的定義和通項公式、求和公式的運用,考查數(shù)列的裂項相消法求和和分組法求和,考查化簡運算能力,屬于中檔題.21、(1);(1).【解題分析】

(1)在中,將代得:,由兩式作商得:,問題得解.(1)利用(1)中結(jié)果求得,分組求和,再利用等差數(shù)列前項和公式及乘公比錯位相減法分別求和即可得解.【題目詳解】(1)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論