版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
題型六幾何最值(復(fù)習(xí)講義)【考點(diǎn)總結(jié)|典例分析】解決幾何最值問題的理論依據(jù)有:①兩點(diǎn)之間線段最短;②垂線段最短;③三角形兩邊之和大于第三邊或三角形兩邊之差小于第三邊(重合時(shí)取到最值);④定圓中的所有弦中,直徑最長;⑤圓外一點(diǎn)與圓心的連線上,該點(diǎn)和此直線與圓的近交點(diǎn)距離最短、遠(yuǎn)交點(diǎn)距離最長.根據(jù)不同特征轉(zhuǎn)化從而減少變量是解決最值問題的關(guān)鍵,直接套用基本模型是解決幾何最值問題的高效手段.動(dòng)點(diǎn)問題是初中數(shù)學(xué)階段的難點(diǎn),它貫穿于整個(gè)初中數(shù)自數(shù)軸起始,至幾何圖形的存在性、幾何圖形的長度及面積的最值,函數(shù)的綜合類題目,無不包含其中.其中尤以幾何圖形的長度及面積的最值、最短路徑問題的求解最為繁瑣且靈活多變,而其中又有一些技巧性很強(qiáng)的數(shù)學(xué)思想(轉(zhuǎn)化思想),本專題以幾個(gè)基本的知識點(diǎn)為經(jīng),以歷年來中考真題為緯,由淺入深探討此類題目的求解技巧及方法.考點(diǎn)01胡不歸胡不歸模型問題解題步驟如下;1、將所求線段和改寫為“PA+PB”的形式(<1),若>1,提取系數(shù),轉(zhuǎn)化為小于1的形式解決.2、在PB的一側(cè),PA的異側(cè),構(gòu)造一個(gè)角度α,使得sinα=.3、最后利用兩點(diǎn)之間線段最短及垂線段最短解題.【模型展示】如圖,一動(dòng)點(diǎn)P在直線MN外的運(yùn)動(dòng)速度為V1,在直線MN上運(yùn)動(dòng)的速度為V2,且V1<V2,A、B為定點(diǎn),點(diǎn)C在直線MN上,確定點(diǎn)C的位置使的值最?。?,記,即求BC+kAC的最小值.構(gòu)造射線AD使得sin∠DAN=k,CH/AC=k,CH=kAC.將問題轉(zhuǎn)化為求BC+CH最小值,過B點(diǎn)作BH⊥AD交MN于點(diǎn)C,交AD于H點(diǎn),此時(shí)BC+CH取到最小值,即BC+kAC最小.在求形如“PA+kPB”的式子的最值問題中,關(guān)鍵是構(gòu)造與kPB相等的線段,將“PA+kPB”型問題轉(zhuǎn)化為“PA+PC”型.1.如圖,△ABC中,AB=AC=10,tanA=2,BE⊥AC于點(diǎn)E,D是線段BE上的一個(gè)動(dòng)點(diǎn),則的最小值是()考點(diǎn)02阿氏圓“阿氏圓”模型核心知識點(diǎn)是構(gòu)造母子型相似,構(gòu)造△PAB∽△CAP推出PA2,即:半徑的平方=原有線段構(gòu)造線段?!灸P驼故尽咳缦聢D,已知A、B兩點(diǎn),點(diǎn)P滿足PA:PB=k(k≠1),則滿足條件的所有的點(diǎn)P構(gòu)成的圖形為圓.(1)角平分線定理:如圖,在△ABC中,AD是∠BAC的角平分線,則.證明:,,即(2)外角平分線定理:如圖,在△ABC中,外角CAE的角平分線AD交BC的延長線于點(diǎn)D,則.證明:在BA延長線上取點(diǎn)E使得AE=AC,連接BD,則△ACD≌△AED(SAS),CD=ED且AD平分∠BDE,則,即.接下來開始證明步驟:如圖,PA:PB=k,作∠APB的角平分線交AB于M點(diǎn),根據(jù)角平分線定理,,故M點(diǎn)為定點(diǎn),即∠APB的角平分線交AB于定點(diǎn);作∠APB外角平分線交直線AB于N點(diǎn),根據(jù)外角平分線定理,,故N點(diǎn)為定點(diǎn),即∠APB外角平分線交直線AB于定點(diǎn);又∠MPN=90°,定邊對定角,故P點(diǎn)軌跡是以MN為直徑的圓.1.如圖,在中,∠ACB=90°,BC=12,AC=9,以點(diǎn)C為圓心,6為半徑的圓上有一個(gè)動(dòng)點(diǎn)D.連接AD、BD、CD,則2AD+3BD的最小值是.2.如圖,已知正方ABCD的邊長為4,圓B的半徑為2,點(diǎn)P是圓B上的一個(gè)動(dòng)點(diǎn),則的最大值為_______.考點(diǎn)03費(fèi)馬點(diǎn)費(fèi)馬點(diǎn)”是指位于三角形內(nèi)且到三角形三個(gè)頂點(diǎn)距高之和最短的點(diǎn)。主要分為兩種情況:(1)當(dāng)三角形三個(gè)內(nèi)角都小于120°的三角形,通常將某三角形繞點(diǎn)旋轉(zhuǎn)60度,從而將“不等三爪圖”中三條線段轉(zhuǎn)化在同一條直線上,利用兩點(diǎn)之間線段最短解決問題。(2)當(dāng)三角形有一個(gè)內(nèi)角大于120°時(shí),費(fèi)馬點(diǎn)就是此內(nèi)角的頂點(diǎn).費(fèi)馬點(diǎn)問題解題的核心技巧:旋轉(zhuǎn)60°構(gòu)造等邊三角形將“不等三爪圖”中三條線段轉(zhuǎn)化至同一直線上利用兩點(diǎn)之間線段最短求解問題【模型展示】問題:在△ABC內(nèi)找一點(diǎn)P,使得PA+PB+PC最?。痉治觥吭谥暗淖钪祮栴}中,我們解決的依據(jù)有:兩點(diǎn)之間線段最短、點(diǎn)到直線的連線中垂線段最短、作對稱化折線段為直線段、確定動(dòng)點(diǎn)軌跡求最值等.(1)如圖,分別以△ABC中的AB、AC為邊,作等邊△ABD、等邊△ACE.(2)連接CD、BE,即有一組手拉手全等:△ADC≌△ABE.(3)記CD、BE交點(diǎn)為P,點(diǎn)P即為費(fèi)馬點(diǎn).(到這一步其實(shí)就可以了)(4)以BC為邊作等邊△BCF,連接AF,必過點(diǎn)P,有∠PAB=∠BPC=∠CPA=120°.在圖三的模型里有結(jié)論:(1)∠BPD=60°;(2)連接AP,AP平分∠DPE.有這兩個(gè)結(jié)論便足以說明∠PAB=∠BPC=∠CPA=120°.原來在“手拉手全等”就已經(jīng)見過了呀,只是相逢何必曾相識!1.如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到,與交于點(diǎn),可推出結(jié)論:問題解決:如圖,在中,,,.點(diǎn)是內(nèi)一點(diǎn),則點(diǎn)到三個(gè)頂點(diǎn)的距離和的最小值是___________2、如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM.EEADBCNM⑴求證:△AMB≌△ENB;⑵①當(dāng)M點(diǎn)在何處時(shí),AM+CM的值最?。虎诋?dāng)M點(diǎn)在何處時(shí),AM+BM+CM的值最小,并說明理由;⑶當(dāng)AM+BM+CM的最小值為時(shí),求正方形的邊長.考點(diǎn)04瓜豆原理動(dòng)點(diǎn)的軌跡為定圓時(shí),可利用:“一定點(diǎn)與圓上的動(dòng)點(diǎn)距離最大值為定點(diǎn)到圓心的距離與半徑之和,最小值為定點(diǎn)到圓心的距離與半徑之差”的性質(zhì)求解。確定動(dòng)點(diǎn)軌跡為圓或者圓弧型的方法:(1)動(dòng)點(diǎn)到定點(diǎn)的距離不變,則點(diǎn)的軌跡是圓或者圓弧。(2)當(dāng)某條邊與該邊所對的角是定值時(shí),該角的頂點(diǎn)的軌跡是圓,具體運(yùn)用如下;=1\*GB3①見直角,找斜邊,想直徑,定外心,現(xiàn)圓形=2\*GB3②見定角,找對邊,想周角,轉(zhuǎn)心角,現(xiàn)圓形【知識精講】如圖,P是圓O上一個(gè)動(dòng)點(diǎn),A為定點(diǎn),連接AP,Q為AP中點(diǎn).考慮:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí),Q點(diǎn)軌跡是?【分析】觀察動(dòng)圖可知點(diǎn)Q軌跡是個(gè)圓,而我們還需確定的是此圓與圓O有什么關(guān)系?考慮到Q點(diǎn)始終為AP中點(diǎn),連接AO,取AO中點(diǎn)M,則M點(diǎn)即為Q點(diǎn)軌跡圓圓心,半徑MQ是OP一半,任意時(shí)刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小結(jié)】確定Q點(diǎn)軌跡圓即確定其圓心與半徑,由A、Q、P始終共線可得:A、M、O三點(diǎn)共線,由Q為AP中點(diǎn)可得:AM=1/2AO.Q點(diǎn)軌跡相當(dāng)于是P點(diǎn)軌跡成比例縮放.根據(jù)動(dòng)點(diǎn)之間的相對位置關(guān)系分析圓心的相對位置關(guān)系;根據(jù)動(dòng)點(diǎn)之間的數(shù)量關(guān)系分析軌跡圓半徑數(shù)量關(guān)系.如圖,P是圓O上一個(gè)動(dòng)點(diǎn),A為定點(diǎn),連接AP,作AQ⊥AP且AQ=AP.考慮:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí),Q點(diǎn)軌跡是?【分析】Q點(diǎn)軌跡是個(gè)圓,可理解為將AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得AQ,故Q點(diǎn)軌跡與P點(diǎn)軌跡都是圓.接下來確定圓心與半徑.考慮AP⊥AQ,可得Q點(diǎn)軌跡圓圓心M滿足AM⊥AO;考慮AP=AQ,可得Q點(diǎn)軌跡圓圓心M滿足AM=AO,且可得半徑MQ=PO.即可確定圓M位置,任意時(shí)刻均有△APO≌△AQM.如圖,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,當(dāng)P在圓O運(yùn)動(dòng)時(shí),Q點(diǎn)軌跡是?【分析】考慮AP⊥AQ,可得Q點(diǎn)軌跡圓圓心M滿足AM⊥AO;考慮AP:AQ=2:1,可得Q點(diǎn)軌跡圓圓心M滿足AO:AM=2:1.即可確定圓M位置,任意時(shí)刻均有△APO∽△AQM,且相似比為2.【模型總結(jié)】為了便于區(qū)分動(dòng)點(diǎn)P、Q,可稱點(diǎn)P為“主動(dòng)點(diǎn)”,點(diǎn)Q為“從動(dòng)點(diǎn)”.此類問題的必要條件:兩個(gè)定量主動(dòng)點(diǎn)、從動(dòng)點(diǎn)與定點(diǎn)連線的夾角是定量(∠PAQ是定值);主動(dòng)點(diǎn)、從動(dòng)點(diǎn)到定點(diǎn)的距離之比是定量(AP:AQ是定值).【結(jié)論】(1)主、從動(dòng)點(diǎn)與定點(diǎn)連線的夾角等于兩圓心與定點(diǎn)連線的夾角:∠PAQ=∠OAM;(2)主、從動(dòng)點(diǎn)與定點(diǎn)的距離之比等于兩圓心到定點(diǎn)的距離之比:AP:AQ=AO:AM,也等于兩圓半徑之比.按以上兩點(diǎn)即可確定從動(dòng)點(diǎn)軌跡圓,Q與P的關(guān)系相當(dāng)于旋轉(zhuǎn)+伸縮.古人云:種瓜得瓜,種豆得豆.“種”圓得圓,“種”線得線,謂之“瓜豆原理”.1.如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點(diǎn),F(xiàn)是線段BC上的動(dòng)點(diǎn),將ΔEBF沿EF所在直線折疊得到ΔEB'F,連接B'D,則B'D的最小值是_____.2.如圖,等邊三角形ABC的邊長為4,點(diǎn)D是直線AB上一點(diǎn).將線段CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°得到線段DE,連結(jié)BE.(1)若點(diǎn)D在AB邊上(不與A,B重合)請依題意補(bǔ)全圖并證明AD=BE;(2)連接AE,當(dāng)AE的長最小時(shí),求CD的長.考點(diǎn)05將軍飲馬1.兩定(異側(cè)),一動(dòng)2.兩定(同側(cè)),一動(dòng)3.一定,兩動(dòng)4.兩動(dòng),兩動(dòng)知識提煉:折線問題→→→(利用軸對稱的性質(zhì))→→→兩點(diǎn)間線段最短問題1.如圖,在矩形ABCD中,AB=10,AD=6,動(dòng)點(diǎn)P滿足S△PAB=S矩形ABCD,則點(diǎn)P到A,B兩點(diǎn)距離之和PA+PB的最小值為.2.如圖,等邊△ABC的邊長為4,AD是BC邊上的中線,F(xiàn)是AD邊上的動(dòng)點(diǎn),E是AC邊上一點(diǎn),若AE=2,當(dāng)EF+CF取得最小值時(shí),則∠ECF的度數(shù)為多少?3.(1)如圖1,在A和B兩地之間有一條河,現(xiàn)要在這條河
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年男方不忠婚姻解約合同模板版B版
- 2024版XX軟件分銷商居間合作合同一
- 2024年進(jìn)出口貿(mào)易意向書
- 2024年貨車掛靠合作協(xié)議模板
- 2024深圳二手房購房定金及物業(yè)管理服務(wù)合同3篇
- 職業(yè)規(guī)劃課程設(shè)計(jì)答卷
- 2025年度建筑工地技術(shù)指導(dǎo)與施工管理勞務(wù)服務(wù)合同3篇
- 二零二五年度傭金支付與客戶滿意度提升合同3篇
- 二零二五年互聯(lián)網(wǎng)廣告業(yè)務(wù)保密合同2篇
- 承德應(yīng)用技術(shù)職業(yè)學(xué)院《嵌入式系統(tǒng)原理與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年我國人口老齡化問題與對策
- 2024年江西省公務(wù)員考試《行測》真題及答案解析
- 家用除濕機(jī)產(chǎn)業(yè)規(guī)劃專項(xiàng)研究報(bào)告
- 雇人放牛合同模板
- 節(jié)能降耗知識培訓(xùn)
- 人教版(2024秋)數(shù)學(xué)一年級上冊 期末綜合測試卷課件
- 牛頓迭代的并行化算法
- 2024秋期國家開放大學(xué)本科《國際私法》一平臺在線形考(形考任務(wù)1至5)試題及答案
- 2023-2024學(xué)年安徽省淮北市烈山區(qū)八年級(上)期末物理試卷
- 建筑垃圾清理運(yùn)輸服務(wù)方案
- 2022-2023年北京版數(shù)學(xué)三年級上冊期末考試測試卷及答案(3套)
評論
0/150
提交評論