版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省邢臺市第三中學2023-2024學年高三數學第一學期期末統(tǒng)考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若命題p:從有2件正品和2件次品的產品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q2.已知函數的部分圖象如圖所示,則()A. B. C. D.3.函數(且)的圖象可能為()A. B. C. D.4.年部分省市將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.5.已知隨機變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對所有都成立,則()A. B. C. D.6.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.637.已知函數,,若對任意,總存在,使得成立,則實數的取值范圍為()A. B.C. D.8.已知正項等比數列的前項和為,且,則公比的值為()A. B.或 C. D.9.已知復數,,則()A. B. C. D.10.已知下列命題:①“”的否定是“”;②已知為兩個命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號為()A.③④ B.①② C.①③ D.②④11.雙曲線C:(,)的離心率是3,焦點到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.12.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正四棱柱中,,.若是側面內的動點,且,則與平面所成角的正切值的最大值為___________.14.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則15.某學習小組有名男生和名女生.若從中隨機選出名同學代表該小組參加知識競賽,則選出的名同學中恰好名男生名女生的概率為___________.16.已知集合,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標準方程;(2)設直線與橢圓的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.18.(12分)已知變換將平面上的點,分別變換為點,.設變換對應的矩陣為.(1)求矩陣;(2)求矩陣的特征值.19.(12分)傳染病的流行必須具備的三個基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個環(huán)節(jié)必須同時存在,方能構成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應該佩戴口罩.某地區(qū)已經出現了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統(tǒng)計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認為是否會佩戴口罩出行的行為與年齡有關?(2)用樣本估計總體,若從該地區(qū)出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82820.(12分)已知命題:,;命題:函數無零點.(1)若為假,求實數的取值范圍;(2)若為假,為真,求實數的取值范圍.21.(12分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.22.(10分)已知函數.(1)當時,求函數在處的切線方程;(2)若函數沒有零點,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】因為從有2件正品和2件次品的產品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。2、A【解析】
先利用最高點縱坐標求出A,再根據求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數的據圖求式問題以及三角函數的公式變換.據圖求式問題要注意結合五點法作圖求解.屬于中檔題.3、D【解析】因為,故函數是奇函數,所以排除A,B;取,則,故選D.考點:1.函數的基本性質;2.函數的圖象.4、B【解析】
甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.5、D【解析】
根據X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數的性質求出其最大值為,進而得出結論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因為,所以當且僅當時,取最大值,又對所有成立,所以,解得,故選:D.【點睛】本題綜合考查了隨機變量的期望?方差的求法,結合了概率?二次函數等相關知識,需要學生具備一定的計算能力,屬于中檔題.6、B【解析】
根據程序框圖中的循環(huán)結構的運算,直至滿足條件退出循環(huán)體,即可得出結果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點睛】本題考查循環(huán)結構輸出結果,模擬程序運行是解題的關鍵,屬于基礎題.7、C【解析】
將函數解析式化簡,并求得,根據當時可得的值域;由函數在上單調遞減可得的值域,結合存在性成立問題滿足的集合關系,即可求得的取值范圍.【詳解】依題意,則,當時,,故函數在上單調遞增,當時,;而函數在上單調遞減,故,則只需,故,解得,故實數的取值范圍為.故選:C.【點睛】本題考查了導數在判斷函數單調性中的應用,恒成立與存在性成立問題的綜合應用,屬于中檔題.8、C【解析】
由可得,故可求的值.【詳解】因為,所以,故,因為正項等比數列,故,所以,故選C.【點睛】一般地,如果為等比數列,為其前項和,則有性質:(1)若,則;(2)公比時,則有,其中為常數且;(3)為等比數列()且公比為.9、B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數問題是高考數學中的??紗栴},屬于得分題,主要考查的方面有:復數的分類、復數的幾何意義、復數的模、共軛復數以及復數的乘除運算,在運算時注意符號的正、負問題.10、B【解析】
由命題的否定,復合命題的真假,充分必要條件,四種命題的關系對每個命題進行判斷.【詳解】“”的否定是“”,正確;已知為兩個命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯誤;“若,則且”是假命題,則它的逆否命題為假命題,錯誤.故選:B.【點睛】本題考查命題真假判斷,掌握四種命題的關系,復合命題的真假判斷,充分必要條件等概念是解題基礎.11、A【解析】
根據焦點到漸近線的距離,可得,然后根據,可得結果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點,一條漸近線則點到的距離為,由所以,則又所以所以焦距為:故選:A【點睛】本題考查雙曲線漸近線方程,以及之間的關系,識記常用的結論:焦點到漸近線的距離為,屬基礎題.12、D【解析】
設圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計算即可.【詳解】設圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點睛】本題考查圓錐的體積的計算,涉及到圓錐的定義,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、2.【解析】
如圖,以為原點建立空間直角坐標系,設點,由得,證明為與平面所成角,令,用三角函數表示出,求解三角函數的最大值得到結果.【詳解】如圖,以為原點建立空間直角坐標系,設點,則,,又,得即;又平面,為與平面所成角,令,當時,最大,即與平面所成角的正切值的最大值為2.故答案為:2【點睛】本題主要考查了立體幾何中的動點問題,考查了直線與平面所成角的計算.對于這類題,一般是建立空間直角坐標,在動點坐標內引入參數,將最值問題轉化為函數的最值問題求解,考查了學生的運算求解能力和直觀想象能力.14、3【解析】
先根據約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫出可行域如圖所示.目標函數z=2x-y,即平移直線y=2x-z,截距最大時即為所求.2y+1=0x-y-1=0點A(12,z在點A處有最小值:z=2×1故答案為:32【點睛】本題主要考查線性規(guī)劃的基本應用,利用數形結合,結合目標函數的幾何意義是解決此類問題的基本方法.15、【解析】
從7人中選出2人則總數有,符合條件數有,后者除以前者即得結果【詳解】從7人中隨機選出2人的總數有,則記選出的名同學中恰好名男生名女生的概率為事件,∴故答案為:【點睛】組合數與概率的基本運用,熟悉組合數公式16、【解析】
直接根據集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點睛】本題考查集合的交集運算,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】
(1)根據題意計算得到,,得到橢圓方程.(2)設,聯立方程得到,根據,計算得到答案.【詳解】(1)由平行四邊形的周長為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點.設,由消得,所以,因為,所以.因為點在以線段為直徑的圓上,所以,即,所以直線的方程或.【點睛】本題考查了橢圓方程,根據直線和橢圓的位置關系求直線,將題目轉化為是解題的關鍵.18、(1)(2)1或6【解析】
(1)設,根據變換可得關于的方程,解方程即可得到答案;(2)求出特征多項式,再解方程,即可得答案;【詳解】(1)設,則,,即,解得,則.(2)設矩陣的特征多項式為,可得,令,可得或.【點睛】本題考查矩陣的求解、矩陣的特征值,考查函數與方程思想、轉化與化歸思想,考查運算求解能力.19、(1)有的把握認為是否戴口罩出行的行為與年齡有關.(2)【解析】
(1)根據列聯表和獨立性檢驗的公式計算出觀測值,從而由參考數據作出判斷.(2)因為樣本中出行不戴口罩的居民有30人,其中年輕人有10人,用樣本估計總體,則出行不戴口罩的年輕人的概率為,是老年人的概率為.根據獨立重復事件的概率公式即可求得結果.【詳解】(1)由題意可知,有的把握認為是否戴口罩出行的行為與年齡有關.(2)由樣本估計總體,出行不戴口罩的年輕人的概率為,是老年人的概率為.人未戴口罩,恰有2人是青年人的概率.【點睛】本題主要考查獨立性檢驗及獨立重復事件的概率求法,難度一般.20、(1)(2)【解析】
(1)為假,則為真,求導,利用導函數研究函數有零點條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當時,,單調遞增,當,,單調遞減,作出函數圖象如下所示,觀察可知,,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實數滿足,則;若假真,則實數滿足,無解;綜上所述,實數的取值范圍為.【點睛】本題考查根據全(特)稱命題的真假求參數的問題.其思路:與全稱命題或特稱命題真假有關的參數取值范圍問題的本質是恒成立問題或有解問題.解決此類問題時,一般先利用等價轉化思想將條件合理轉化,得到關于參數的方程或不等式(組),再通過解方程或不等式(組)求出參數的值或范圍.21、(1)證明見解析(2)【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024抵押借貸合同范文
- 2024咨詢服務合同范本標準范文
- 廣東省珠海市七年級上學期語文期中試卷7套【附答案】
- 2024藥品代理合同范本
- 單位團購房產轉讓合同范本
- 企業(yè)財產出售協(xié)議樣式
- 2024年農村房屋轉讓協(xié)議范本
- 七年級地理上冊5.1《世界的人口》教案粵教版
- 2024版標準家庭裝修協(xié)議
- 建筑外墻保溫工程施工合同
- 品牌授權協(xié)議書
- 藝術設計就業(yè)職業(yè)生涯規(guī)劃
- 《狙擊手》和《新神榜楊戩》電影賞析
- 槍庫應急處置預案
- 老年患者術后譫妄的護理干預
- 《凸透鏡成像的規(guī)律》課件
- 倉庫管理中的客戶服務和溝通技巧
- 規(guī)劃選址及用地預審
- 土砂石料廠項目融資計劃書
- 2024年給藥錯誤護理不良事件分析持續(xù)改進
- 郵政營銷策劃方案
評論
0/150
提交評論