山西省陽泉市2022-2023學(xué)年高二上學(xué)期期末數(shù)學(xué)試題(含答案詳解)_第1頁
山西省陽泉市2022-2023學(xué)年高二上學(xué)期期末數(shù)學(xué)試題(含答案詳解)_第2頁
山西省陽泉市2022-2023學(xué)年高二上學(xué)期期末數(shù)學(xué)試題(含答案詳解)_第3頁
山西省陽泉市2022-2023學(xué)年高二上學(xué)期期末數(shù)學(xué)試題(含答案詳解)_第4頁
山西省陽泉市2022-2023學(xué)年高二上學(xué)期期末數(shù)學(xué)試題(含答案詳解)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022~2023學(xué)年度第一學(xué)期期末考試試題高二數(shù)學(xué)第Ⅰ卷(32分)一、單項(xiàng)選擇題:(本大題8小題,每小題3分,共24分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.5 B.7 C.10 D.15【答案】B【解析】【分析】由遞推關(guān)系求解即可.【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.故選:B2.如圖,在三棱柱SKIPIF1<0中,E,F(xiàn)分別是BC,SKIPIF1<0的中點(diǎn),SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)空間向量線性運(yùn)算的幾何意義進(jìn)行求解即可.【詳解】SKIPIF1<0SKIPIF1<0,故選:D.3.函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】先對(duì)函數(shù)求導(dǎo),然后令導(dǎo)函數(shù)大于0解出不等式,并結(jié)合函數(shù)的定義域,即可得到本題答案.【詳解】因SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,又函數(shù)的定義域?yàn)镾KIPIF1<0,所以函數(shù)的單調(diào)遞增區(qū)間為SKIPIF1<0,故選:C4.若兩條直線SKIPIF1<0與SKIPIF1<0平行,則SKIPIF1<0與SKIPIF1<0間的距離是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)平行關(guān)系求解SKIPIF1<0,進(jìn)而根據(jù)平行線間距離公式即可求解.【詳解】由SKIPIF1<0與SKIPIF1<0平行,可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),兩直線不重合,故SKIPIF1<0,進(jìn)而SKIPIF1<0與SKIPIF1<0間的距離為SKIPIF1<0,故選:B5.圓SKIPIF1<0內(nèi)有一點(diǎn)SKIPIF1<0,AB為過點(diǎn)SKIPIF1<0且傾斜角為SKIPIF1<0的弦,則AB的長(zhǎng)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】先求得直線SKIPIF1<0的方程,然后利用弦長(zhǎng)公式求得SKIPIF1<0.【詳解】直線AB的斜率為SKIPIF1<0,又直線AB過點(diǎn)SKIPIF1<0,所以直線AB的方程為:SKIPIF1<0,即SKIPIF1<0,圓SKIPIF1<0的圓心為SKIPIF1<0,半徑SKIPIF1<0,圓心SKIPIF1<0到直線AB:SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0.故選:A.6.已知函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0圖象如下圖所示,則原函數(shù)SKIPIF1<0的圖象是()A. B.C. D.【答案】B【解析】【分析】根據(jù)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系以及導(dǎo)數(shù)的變化可得結(jié)果.【詳解】由圖可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,故函數(shù)SKIPIF1<0在SKIPIF1<0上的增長(zhǎng)速度越來越快,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,故函數(shù)SKIPIF1<0在SKIPIF1<0上的增長(zhǎng)速度越來越慢.B選項(xiàng)中的圖象滿足題意.故選:B.7.1202年意大利數(shù)學(xué)家斐波那契出版了他的《算盤全書》,在書中收錄了一個(gè)有關(guān)兔子繁殖的問題.他從兔子繁殖規(guī)律中發(fā)現(xiàn)了“斐波那契數(shù)列”,具體數(shù)列為:1,1,2,3,5,8,13,…,即從該數(shù)列的第三項(xiàng)開始,每個(gè)數(shù)字都等于前兩個(gè)相鄰數(shù)字之和.已知數(shù)列SKIPIF1<0為斐波那契數(shù)列,其前n項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的值為()A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】利用遞推公式,得到SKIPIF1<0SKIPIF1<0SKIPIF1<0【詳解】SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故選:A8.過拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)SKIPIF1<0作兩條互相垂直的弦SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0為拋物線上的一動(dòng)點(diǎn),SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值是()A.2 B.3 C.4 D.5【答案】B【解析】【分析】顯然直線SKIPIF1<0的斜率存在且不為0,設(shè)直線SKIPIF1<0的斜率為SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,與拋物線方程聯(lián)立結(jié)合韋達(dá)定理可得:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以直線SKIPIF1<0的斜率為:SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0到準(zhǔn)線SKIPIF1<0的距離為SKIPIF1<0,由拋物線的性質(zhì)可知:SKIPIF1<0,而當(dāng)SKIPIF1<0垂直于SKIPIF1<0軸時(shí),SKIPIF1<0的值最小,最小值為SKIPIF1<0.【詳解】解:顯然直線SKIPIF1<0的斜率存在且不為0,設(shè)直線SKIPIF1<0的斜率為SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程SKIPIF1<0,消去SKIPIF1<0得:SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,由拋物線的性質(zhì)可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的斜率為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0拋物線方程為:SKIPIF1<0,準(zhǔn)線方程為:SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0到準(zhǔn)線SKIPIF1<0的距離為SKIPIF1<0,由拋物線的性質(zhì)可知:SKIPIF1<0,而當(dāng)SKIPIF1<0垂直于SKIPIF1<0軸時(shí),SKIPIF1<0的值最小,最小值為SKIPIF1<0,如圖所示:SKIPIF1<0的最小值為3,故選:B.二、多項(xiàng)選擇題:(本大題2小題,每小題4分,共8分.在每小題給出的四個(gè)選項(xiàng)中,至少有兩項(xiàng)是符合題目要求的,全部選對(duì)得4分,有選錯(cuò)的得0分,部分選對(duì)得2分)9.如圖,在長(zhǎng)方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,以直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0軸、SKIPIF1<0軸、SKIPIF1<0軸,建立空間直角坐標(biāo)系,則()A.點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,5,SKIPIF1<0B.點(diǎn)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱的點(diǎn)為SKIPIF1<0,8,SKIPIF1<0C.點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱的點(diǎn)為SKIPIF1<0,5,SKIPIF1<0D.點(diǎn)SKIPIF1<0關(guān)于平面SKIPIF1<0對(duì)稱的點(diǎn)為SKIPIF1<0,5,SKIPIF1<0【答案】ACD【解析】【分析】對(duì)A,根據(jù)圖示分析即可;對(duì)B,設(shè)點(diǎn)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱的點(diǎn)為SKIPIF1<0,再根據(jù)SKIPIF1<0為SKIPIF1<0的中點(diǎn)列式求解即可;對(duì)C,根據(jù)四邊形SKIPIF1<0為正方形判斷即可;對(duì)D,根據(jù)SKIPIF1<0平面SKIPIF1<0求解即可【詳解】對(duì)A,由圖可得,SKIPIF1<0的坐標(biāo)為SKIPIF1<0,5,SKIPIF1<0,故A正確;對(duì)B,由圖,SKIPIF1<0,SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱的點(diǎn)為SKIPIF1<0則SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,故B錯(cuò)誤;對(duì)C,在長(zhǎng)方體中SKIPIF1<0,所以四邊形SKIPIF1<0為正方形,SKIPIF1<0與SKIPIF1<0垂直且平分,即點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱的點(diǎn)為SKIPIF1<0,選項(xiàng)C正確;對(duì)D,因?yàn)镾KIPIF1<0平面SKIPIF1<0,故點(diǎn)SKIPIF1<0關(guān)于平面SKIPIF1<0對(duì)稱的點(diǎn)為SKIPIF1<0,即SKIPIF1<0,選項(xiàng)D正確;故選:ACD.10.若存在實(shí)常數(shù)SKIPIF1<0和SKIPIF1<0,使得函數(shù)SKIPIF1<0和SKIPIF1<0對(duì)其定義域上的任意實(shí)數(shù)SKIPIF1<0都滿足SKIPIF1<0和SKIPIF1<0恒成立,則稱直線SKIPIF1<0為SKIPIF1<0和SKIPIF1<0的“隔離直線”,已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,下列命題正確的是()A.SKIPIF1<0與SKIPIF1<0有“隔離直線”B.SKIPIF1<0和SKIPIF1<0之間存在“隔離直線”,且SKIPIF1<0的取值范圍為SKIPIF1<0C.SKIPIF1<0和SKIPIF1<0之間存在“隔離直線”,且SKIPIF1<0的取值范圍是SKIPIF1<0D.SKIPIF1<0和SKIPIF1<0之間存在唯一的“隔離直線”SKIPIF1<0【答案】ABD【解析】【分析】對(duì)于A,取直線SKIPIF1<0,討論SKIPIF1<0與SKIPIF1<0的符號(hào)判斷A;對(duì)于B,C,令隔離直線為SKIPIF1<0,利用二次不等式恒成立計(jì)算判斷B,C;對(duì)于D,函數(shù)SKIPIF1<0與SKIPIF1<0有公共點(diǎn)SKIPIF1<0,求出SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線,再證明此切線與SKIPIF1<0圖象關(guān)系作答.【詳解】對(duì)于A,取直線SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0成立,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0遞減,在SKIPIF1<0上遞增,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0成立,直線SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的“隔離直線”,A正確;對(duì)于B,C,令SKIPIF1<0和SKIPIF1<0的“隔離直線”為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,有SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),不等式成立,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的對(duì)稱軸SKIPIF1<0,而SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,顯然SKIPIF1<0滿足此不等式,有SKIPIF1<0,而SKIPIF1<0,解得SKIPIF1<0,同理,SKIPIF1<0,B正確,C不正確;對(duì)于D,因SKIPIF1<0,即SKIPIF1<0和SKIPIF1<0的圖象有公共點(diǎn)SKIPIF1<0,若SKIPIF1<0和SKIPIF1<0有隔離直線,則該直線必過點(diǎn)SKIPIF1<0,設(shè)過點(diǎn)SKIPIF1<0的直線方程為SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0恒成立,則SKIPIF1<0,解得SKIPIF1<0,即這條直線為SKIPIF1<0,令SKIPIF1<0,求導(dǎo)得:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0和SKIPIF1<0之間存在唯一的“隔離直線”SKIPIF1<0,D正確.故選:ABD【點(diǎn)睛】思路點(diǎn)睛:涉及函數(shù)不等式恒成立問題,可以探討函數(shù)的最值,借助函數(shù)最值轉(zhuǎn)化解決問題.第Ⅱ卷(68分)三、填空題:(本大題共四小題,每小題4分,共16分)11.已知函數(shù)SKIPIF1<0圖象在點(diǎn)SKIPIF1<0處的切線方程是SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【解析】【分析】由導(dǎo)數(shù)的幾何意義可得SKIPIF1<0的值,將點(diǎn)SKIPIF1<0的坐標(biāo)代入切線方程可得SKIPIF1<0,即可得解.【詳解】由導(dǎo)數(shù)的幾何意義可得SKIPIF1<0,將點(diǎn)SKIPIF1<0的坐標(biāo)代入切線方程可得SKIPIF1<0,因此,SKIPIF1<0.故答案為:SKIPIF1<0.12.已知數(shù)列SKIPIF1<0的前n項(xiàng)和公式為SKIPIF1<0,則SKIPIF1<0的通項(xiàng)公式為______.【答案】SKIPIF1<0【解析】【分析】由題意,根據(jù)數(shù)列的通項(xiàng)SKIPIF1<0與前n項(xiàng)和SKIPIF1<0之間的關(guān)系,即可求得數(shù)列的通項(xiàng)公式.【詳解】由題意,可知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.又因?yàn)镾KIPIF1<0不滿足SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<013.設(shè)橢圓C:SKIPIF1<0的左、右焦點(diǎn)分別為F1,F(xiàn)2,P是C上的點(diǎn),PF2⊥F1F2,SKIPIF1<0,則C的離心率為________.【答案】SKIPIF1<0【解析】【分析】設(shè)SKIPIF1<0,根據(jù)直角三角形中SKIPIF1<0角所對(duì)的邊等于斜邊的一半以及勾股定理,得出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,根據(jù)橢圓的定義以及離心率公式求解即可.【詳解】在SKIPIF1<0中,設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.故SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】本題主要考查了橢圓的定義以及離心率的求法,屬于基礎(chǔ)題.14.當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn),則實(shí)數(shù)m的取值范圍___________.【答案】SKIPIF1<0【解析】【分析】函數(shù)有兩個(gè)極值點(diǎn)轉(zhuǎn)化為方程SKIPIF1<0有兩個(gè)不同的實(shí)數(shù)根,等價(jià)于SKIPIF1<0與SKIPIF1<0有兩個(gè)不同的交點(diǎn),構(gòu)造函數(shù)SKIPIF1<0,即可求出結(jié)果.【詳解】SKIPIF1<0有兩個(gè)極值點(diǎn),所以SKIPIF1<0有兩個(gè)不同的實(shí)數(shù)根,即SKIPIF1<0有兩個(gè)不同的實(shí)數(shù)根,等價(jià)于SKIPIF1<0與SKIPIF1<0有兩個(gè)不同的交點(diǎn),設(shè)SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0當(dāng)SKIPIF1<0;SKIPIF1<0所以SKIPIF1<0與SKIPIF1<0要有兩個(gè)不同的交點(diǎn),只需SKIPIF1<0故答案為:SKIPIF1<0【點(diǎn)睛】方法點(diǎn)睛:含參方程有根的問題轉(zhuǎn)化為函數(shù)圖像的交點(diǎn)問題,數(shù)形結(jié)合,是常用的方法.本題考查了運(yùn)算求解能力和數(shù)形結(jié)合思想,屬于一般題目.四、解答題:(本大題共5小題,共52分.解答應(yīng)寫出必要的文字說明或推理、演算過程)15.已知圓C經(jīng)過SKIPIF1<0,SKIPIF1<0兩點(diǎn),且圓心C在直線SKIPIF1<0上.(1)求經(jīng)過點(diǎn)A,并且在兩坐標(biāo)軸上截距相等的直線方程;(2)求過點(diǎn)B的圓C的切線方程.【答案】(1)SKIPIF1<0或SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)分別討論直線過原點(diǎn)和不過原點(diǎn)兩種情況,設(shè)出直線方程,代入點(diǎn)SKIPIF1<0坐標(biāo),求解即可.(2)設(shè)圓心坐標(biāo)SKIPIF1<0,借助于SKIPIF1<0,解出C點(diǎn)坐標(biāo),利用直線SKIPIF1<0和切線垂直求切線的斜率,進(jìn)而寫出切線方程.【小問1詳解】經(jīng)過點(diǎn)A,在兩坐標(biāo)軸上的截距相等的直線,當(dāng)直線過原點(diǎn)時(shí),設(shè)直線的方程為SKIPIF1<0,代入點(diǎn)SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,即直線的方程為SKIPIF1<0,當(dāng)直線不過原點(diǎn)時(shí),設(shè)直線的方程為SKIPIF1<0,將點(diǎn)SKIPIF1<0代入解得SKIPIF1<0,即直線的方程為SKIPIF1<0∴所求直線的方程為SKIPIF1<0或SKIPIF1<0;【小問2詳解】因圓心C在直線SKIPIF1<0上,則設(shè)圓心SKIPIF1<0,又圓C經(jīng)過SKIPIF1<0,SKIPIF1<0兩點(diǎn),于是得圓C的半徑SKIPIF1<0,即有SKIPIF1<0,解得SKIPIF1<0,圓心SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴切線l的方程為:SKIPIF1<0,即SKIPIF1<0.16.已知等比數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0是SKIPIF1<0與2的等差中項(xiàng),等差數(shù)列SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0在一次函數(shù)SKIPIF1<0的圖象上.(1)求數(shù)列SKIPIF1<0,SKIPIF1<0的通項(xiàng)SKIPIF1<0和SKIPIF1<0;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)結(jié)合已知條件,利用SKIPIF1<0與SKIPIF1<0之間的關(guān)系求SKIPIF1<0的通項(xiàng)公式;將SKIPIF1<0代入SKIPIF1<0中可得到公差,然后利用等差數(shù)列的通項(xiàng)公式即可求解;(2)利用錯(cuò)位相減法即可求解.【小問1詳解】因?yàn)镾KIPIF1<0是SKIPIF1<0與2的等差中項(xiàng),所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,從而SKIPIF1<0,則等比數(shù)列SKIPIF1<0的公比SKIPIF1<0,故SKIPIF1<0;因?yàn)镾KIPIF1<0,點(diǎn)SKIPIF1<0在一次函數(shù)SKIPIF1<0的圖象上,所以SKIPIF1<0,即等差數(shù)列SKIPIF1<0的公差為2,從而SKIPIF1<0.【小問2詳解】由SKIPIF1<0,得:SKIPIF1<0...①SKIPIF1<0...②①-②得,SKIPIF1<0SKIPIF1<0,從而SKIPIF1<0.17.如圖,在四棱錐SKIPIF1<0中,PC⊥底面ABCD,ABCD是直角梯形,AD⊥DC,ABSKIPIF1<0DC,AB=2AD=2CD=2,點(diǎn)E是PB的中點(diǎn).(1)證明:平面EAC⊥平面PBC;(2)若直線PB與平面PAC所成角的正弦值為SKIPIF1<0,求二面角P-AC-E的余弦值.【答案】(1)證明見解析(2)SKIPIF1<0【解析】【分析】(1)根據(jù)線面垂直的性質(zhì)及勾股定理的逆定理可證出線面垂直,再由面面垂直的判定定理求證即可;(2)建立空間直角坐標(biāo)系,利用向量法求解即可.【小問1詳解】∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0且SKIPIF1<0是直角梯形,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0.∵SKIPIF1<0平面SKIPIF1<0,∴平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0【小問2詳解】∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0.由(1)知SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0即為直線SKIPIF1<0與平面SKIPIF1<0所成角.∴SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0取SKIPIF1<0的中點(diǎn)G,連接SKIPIF1<0,以點(diǎn)C為坐標(biāo)原點(diǎn),分別以SKIPIF1<0?SKIPIF1<0?SKIPIF1<0為x軸?y軸?z軸正方向,建立如圖所示的空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0為平面SKIPIF1<0的法向量,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0設(shè)SKIPIF1<0為平面SKIPIF1<0的法向量,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0.∴SKIPIF1<0.由圖知所求二面角為銳角,所以二面角SKIPIF1<0的余弦值為SKIPIF1<0.18.已知SKIPIF1<0是橢圓SKIPIF1<0的左焦點(diǎn),上頂點(diǎn)B的坐標(biāo)是SKIPIF1<0,離心率為SKIPIF1<0.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)O為坐標(biāo)原點(diǎn),直線l過點(diǎn)SKIPIF1<0且與橢圓相交于P,Q兩點(diǎn),過點(diǎn)SKIPIF1<0作SKIPIF1<0,與直線SKIPIF1<0相交于點(diǎn)E,連接OE,與線段PQ相交于點(diǎn)M,求證:點(diǎn)M為線段PQ的中點(diǎn).【答案】(1)SKIPIF1<0(2)證明見解析【解析】【分析】(1)根據(jù)已知條件求得SKIPIF1<0,從而求得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出直線SKIPIF1<0的方程,求得直線SKIPIF1<0的方程、直線SKIPIF1<0的方程,求得SKIPIF1<0點(diǎn)坐標(biāo),聯(lián)立直線SKIPIF1<0的方程與橢圓方程,化簡(jiǎn)寫出根與系數(shù)關(guān)系,求得SKIPIF1<0中點(diǎn)坐標(biāo),進(jìn)而判斷出SKIPIF1<0是SKIPIF1<0的中點(diǎn).【小問1詳解】因橢圓SKIPIF1<0的上頂點(diǎn)SKIPIF1<0,則SKIPIF1<0,令橢圓半焦距為c,由離心率SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,∴橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.【小問2詳解】由(1)知,SKIPIF1<0,SKIPIF1<0,顯然直線l不垂直于y軸,設(shè)直線SKIPIF1<0,顯然,直線l不垂直于y軸,因直線SKIPIF1<0過點(diǎn)SKIPIF1<0,且SKIPIF1<0,則直線SKIPIF1<0的方程可設(shè)為,SKIPIF1<0由SKIPIF1<0得點(diǎn)SKIPIF1<0,直線OE的方程為:SKIPIF1<0,由SKIPIF1<0解得:SKIPIF1<0,因此點(diǎn)SKIPIF1<0,由SKIPIF1<0消去x并整理得:SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即線段PQ中點(diǎn)坐標(biāo)為SKIPIF1<0,∴點(diǎn)M為線段PQ的中點(diǎn).19.已知函數(shù)SKIPIF1<0.(1)若曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,求SKIPIF1<0的值;(2)若SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0存在兩個(gè)不相等的零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍;(3)當(dāng)SKIPIF1<0時(shí),是否存在整數(shù)SKIPIF1<0,使得關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立?若存在,求出SKIPIF1<0的最大值;若不存在,說明理由.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)存在,最大值為SKIPIF1<0.【解析】【分析】(1)求出函數(shù)SKIPIF1<0的導(dǎo)數(shù)SKIPIF1<0,由題意得出SKIPIF1<0從而可求出實(shí)數(shù)SKIPIF1<0的值;(2)令SKIPIF1<0,可得知函數(shù)SKIPIF1<0在SKIPIF1<0上有兩個(gè)零點(diǎn),分SKIPIF1<0和SKIPIF1<0兩種情況討論,利用導(dǎo)數(shù)分析函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性和極值,由題意轉(zhuǎn)化為函數(shù)SKIPIF1<0極值相關(guān)的不等式,解出即可得出實(shí)數(shù)SKIPIF1<0的取值范圍;(3)將SKIPIF1<0代入函數(shù)SKIPIF1<0的解析式得出SKIPIF1<0,對(duì)該函數(shù)求導(dǎo)得出SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,利用單調(diào)性結(jié)合零點(diǎn)存在定理找

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論