版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年山東青島嶗山區(qū)數(shù)學(xué)九上期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.下列方程有兩個(gè)相等的實(shí)數(shù)根是()A.x﹣x+3=0 B.x﹣3x+2=0 C.x﹣2x+1=0 D.x﹣4=02.如圖,小明在時(shí)測得某樹的影長為,時(shí)又測得該樹的影長為,若兩次日照的光線互相垂直,則樹的高度為.A.2 B.4 C.6 D.83.若2a=3b,則下列比列式正確的是()A. B. C. D.4.在△ABC中,AB=AC=13,BC=24,則tanB等于()A. B. C. D.5.三角形的兩邊長分別為3和2,第三邊的長是方程的一個(gè)根,則這個(gè)三角形的周長是()A.10 B.8或7 C.7 D.86.如圖,在⊙O中,點(diǎn)A、B、C在圓上,∠AOB=100°,則∠C=()A.45° B.50° C.55° D.60°7.某商品原價(jià)為180元,連續(xù)兩次提價(jià)后售價(jià)為300元,設(shè)這兩次提價(jià)的年平均增長率為x,那么下面列出的方程正確的是()A.180(1+x)=300 B.180(1+x)2=300C.180(1﹣x)=300 D.180(1﹣x)2=3008.如圖,分別與相切于點(diǎn),為上一點(diǎn),,則()A. B. C. D.9.如圖,A,B,C,D是⊙O上的四個(gè)點(diǎn),B是的中點(diǎn),M是半徑OD上任意一點(diǎn).若∠BDC=40°,則∠AMB的度數(shù)不可能是()A.45° B.60° C.75° D.85°10.如圖,正方形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)40°得到正方形ODEF,連接AF,則∠OFA的度數(shù)是()A.20° B.25° C.30° D.35°二、填空題(每小題3分,共24分)11.如圖,Rt△ABC中,∠ACB=90°,BC=3,tanA=,將Rt△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△DEC,點(diǎn)F是DE上一動(dòng)點(diǎn),以點(diǎn)F為圓心,F(xiàn)D為半徑作⊙F,當(dāng)FD=_____時(shí),⊙F與Rt△ABC的邊相切.12.如圖,用一張半徑為10cm的扇形紙板做一個(gè)圓錐形帽子(接縫忽略不計(jì)),如果做成的圓錐形帽子的高為8cm,那么這張扇形紙板的弧長是________cm.13.如圖,將一塊三角板和半圓形量角器按圖中方式疊放,三角板一邊與量角器的零刻度線所在直線重合,重疊部分的量角器?。ǎ?yīng)的圓心角(∠AOB)為120°,OC的長為2cm,則三角板和量角器重疊部分的面積為_____.14.如圖,△ABC內(nèi)接于圓,點(diǎn)D在弧BC上,記∠BAC-∠BCD=α,則圖中等于α的角是_______15.如圖所示,四邊形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,則cos∠ADC=______.16.如圖(1),在矩形ABCD中,將矩形折疊,使點(diǎn)B落在邊AD上,這時(shí)折痕與邊AD和BC分別交于點(diǎn)E、點(diǎn)F.然后再展開鋪平,以B、E、F為頂點(diǎn)的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)“折痕△BEF”面積最大時(shí),點(diǎn)E的坐標(biāo)為_________________________.17.有一條拋物線,三位學(xué)生分別說出了它的一些性質(zhì):甲說:對稱軸是直線;乙說:與軸的兩個(gè)交點(diǎn)的距離為6;丙說:頂點(diǎn)與軸的交點(diǎn)圍成的三角形面積等于9,則這條拋物線解析式的頂點(diǎn)式是______.18.已知:如圖,點(diǎn)是邊長為的菱形對角線上的一個(gè)動(dòng)點(diǎn),點(diǎn)是邊的中點(diǎn),且,則的最小值是_______.三、解答題(共66分)19.(10分)已知正方形ABCD中,E為對角線BD上一點(diǎn),過點(diǎn)E作EF⊥BD交BC于點(diǎn)F,連接DF,G為DF的中點(diǎn),連接EG,(1)如圖1,求證:EG=CG;(2)將圖1中的ΔBEF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)45°,如圖2,取DF的中點(diǎn)G,連接EG,CG.問((3)將圖1中的ΔBEF繞點(diǎn)B逆時(shí)計(jì)旋轉(zhuǎn)任意角度,如圖3,取DF的中點(diǎn)G,連接EG,CG.問(20.(6分)為響應(yīng)國家全民閱讀的號(hào)召,某社區(qū)鼓勵(lì)居民到社區(qū)閱覽室借閱讀書,并統(tǒng)計(jì)每年的借閱人數(shù)和圖書借閱總量(單位:本),該閱覽室在2014年圖書借閱總量是7500本,2016年圖書借閱總量是10800本.(1)求該社區(qū)的圖書借閱總量從2014年至2016年的年平均增長率;(2)已知2016年該社區(qū)居民借閱圖書人數(shù)有1350人,預(yù)計(jì)2017年達(dá)到1440人,如果2016年至2017年圖書借閱總量的增長率不低于2014年至2016年的年平均增長率,那么2017年的人均借閱量比2016年增長a%,求a的值至少是多少?21.(6分)如圖,拋物線的圖象經(jīng)過點(diǎn),頂點(diǎn)的縱坐標(biāo)為,與軸交于兩點(diǎn).(1)求拋物線的解析式.(2)連接為線段上一點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).22.(8分)(1)問題發(fā)現(xiàn):如圖1,在等腰直角三角形中,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,連接,則的面積為__________;(請用含的式子表示的面積;提示:過點(diǎn)作邊上的高)(2)類比探究:如圖2,在一般的中,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,連接.(1)中的結(jié)論是否成立,若成立,請說明理由.(3)拓展應(yīng)用:如圖3,在等腰三角形中,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,連接.試直接用含的式子表示的面積.(不寫探究過程)23.(8分)如圖,已知拋物線經(jīng)過坐標(biāo)原點(diǎn)和軸上另一點(diǎn),頂點(diǎn)的坐標(biāo)為.矩形的頂點(diǎn)與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=1.(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;(2)將矩形以每秒個(gè)單位長度的速度從圖1所示的位置沿軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)也以相同的速度從點(diǎn)出發(fā)向勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為秒,直線與該拋物線的交點(diǎn)為(如圖2所示).①當(dāng),判斷點(diǎn)是否在直線上,并說明理由;②設(shè)P、N、C、D以為頂點(diǎn)的多邊形面積為,試問是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由.24.(8分)如圖,點(diǎn)是正方形邊.上一點(diǎn),連接,作于點(diǎn),于點(diǎn),連接.(1)求證:;(2)己知,四邊形的面積為,求的值.25.(10分)如圖所示是我國古代城市用以滯洪或分洪系統(tǒng)的局部截面原理圖,圖中為下水管道口直徑,為可繞轉(zhuǎn)軸自由轉(zhuǎn)動(dòng)的閥門,平時(shí)閥門被管道中排出的水沖開,可排出城市污水:當(dāng)河水上漲時(shí),閥門會(huì)因河水壓迫而關(guān)閉,以防止河水倒灌入城中.若閥門的直徑,為檢修時(shí)閥門開啟的位置,且.(1)直接寫出閥門被下水道的水沖開與被河水關(guān)閉過程中的取值范圍;(2)為了觀測水位,當(dāng)下水道的水沖開閥門到達(dá)位置時(shí),在點(diǎn)處測得俯角,若此時(shí)點(diǎn)恰好與下水道的水平面齊平,求此時(shí)下水道內(nèi)水的深度.(結(jié)果保留根號(hào))26.(10分)某水果經(jīng)銷商到水果種植基地采購葡萄,經(jīng)銷商一次性采購葡萄的采購單價(jià)(元/千克)與采購量(千克)之間的函數(shù)關(guān)系圖象如圖中折線所示(不包括端點(diǎn)).(1)當(dāng)時(shí),寫出與之間的函數(shù)關(guān)系式;(2)葡萄的種植成本為8元/千克,某經(jīng)銷商一次性采購葡萄的采購量不超過1000千克,當(dāng)采購量是多少時(shí),水果種植基地獲利最大,最大利潤是多少元?
參考答案一、選擇題(每小題3分,共30分)1、C【分析】先根據(jù)方程求出△的值,再根據(jù)根的判別式的意義判斷即可.【詳解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程沒有實(shí)數(shù)根,故本選項(xiàng)不符合題意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有兩個(gè)不相等的實(shí)數(shù)根,故本選項(xiàng)不符合題意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有兩個(gè)相等的實(shí)數(shù)根,故本選項(xiàng)符合題意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有兩個(gè)不相等的實(shí)數(shù)根,故本選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】本題考查了根的判別式,能熟記根的判別式的意義是解此題的關(guān)鍵.2、B【解析】根據(jù)題意,畫出示意圖,易得:Rt△EDC∽R(shí)t△FDC,進(jìn)而可得;即DC2=ED?FD,代入數(shù)據(jù)可得答案.【詳解】解:根據(jù)題意,作△EFC;樹高為CD,且∠ECF=90°,ED=2,F(xiàn)D=8;∵∠E+∠ECD=∠E+∠CFD=90°∴∠ECD=∠CFD∴Rt△EDC∽R(shí)t△FDC,有;即DC2=ED?FD,代入數(shù)據(jù)可得DC2=16,DC=4;故選:B.【點(diǎn)睛】本題通過投影的知識(shí)結(jié)合三角形的相似,求解高的大??;是平行投影性質(zhì)在實(shí)際生活中的應(yīng)用.3、C【分析】根據(jù)比例的性質(zhì)即可得到結(jié)論.【詳解】解:∵2a=3b,∴故選:C.【點(diǎn)睛】此題主要考查比例的性質(zhì),解題的關(guān)鍵是熟知其變形.4、B【解析】如圖,等腰△ABC中,AB=AC=13,BC=24,過A作AD⊥BC于D,則BD=12,在Rt△ABD中,AB=13,BD=12,則,AD=,故tanB=.故選B.【點(diǎn)睛】考查的是銳角三角函數(shù)的定義、等腰三角形的性質(zhì)及勾股定理.5、B【分析】因式分解法解方程求得x的值,再根據(jù)三角形的三邊關(guān)系判斷能否構(gòu)成三角形,最后求出周長即可.【詳解】解:∵,∴(x-2)(x-3)=0,∴x-2=0或x-3=0,解得:x=2或x=3,當(dāng)x=2時(shí),三角形的三邊2+2>3,可以構(gòu)成三角形,周長為3+2+2=7;當(dāng)x=3時(shí),三角形的三邊滿足3+2>3,可以構(gòu)成三角形,周長為3+2+3=8,故選:B.【點(diǎn)睛】本題主要考查解一元二次方程的能力和三角形三邊的關(guān)系,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結(jié)合方程的特點(diǎn)選擇合適、簡便的方法是解題的關(guān)鍵.6、B【分析】利用同弧所對的圓周角是圓心角的一半,求得圓周角的度數(shù)即可;【詳解】解:∵,∴∠C=∠AOB,∵∠AOB=100°,∴∠C=50°;故選:B.【點(diǎn)睛】本題主要考查了圓周角定理,掌握圓周角定理是解題的關(guān)鍵.7、B【分析】本題可先用x表示出第一次提價(jià)后商品的售價(jià),再根據(jù)題意表示出第二次提價(jià)后的售價(jià),然后根據(jù)已知條件得到關(guān)于x的方程.【詳解】當(dāng)商品第一次提價(jià)后,其售價(jià)為:180(1+x);當(dāng)商品第二次提價(jià)后,其售價(jià)為:180(1+x)1.∴180(1+x)1=2.故選:B.【點(diǎn)睛】本題主要考查一元二次方程的應(yīng)用,要根據(jù)題意表示出第一次提價(jià)后商品的售價(jià),再根據(jù)題意列出第二次提價(jià)后售價(jià)的方程,令其等于2即可.8、A【分析】連接OA,OB,根據(jù)切線的性質(zhì)定理得到∠OAP=90°,∠OBP=90°,根據(jù)四邊形的內(nèi)角和等于360°求出∠AOB,最后根據(jù)圓周角定理解答.【詳解】解:連接OA,OB,
∵PA,PB分別與⊙O相切于A,B點(diǎn),
∴∠OAP=90°,∠OBP=90°,
∴∠AOB=360°-90°-90°-66°=114°,
由圓周角定理得,∠C=∠AOB=57°,
故選:A.【點(diǎn)睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半是解題的關(guān)鍵.9、D【解析】解:∵B是弧AC的中點(diǎn),∴∠AOB=2∠BDC=80°.又∵M(jìn)是OD上一點(diǎn),∴∠AMB≤∠AOB=80°.則不符合條件的只有85°.故選D.點(diǎn)睛:本題考查了圓周角定理,正確理解圓周角定理求得∠AOB的度數(shù)是關(guān)鍵.10、B【解析】由旋轉(zhuǎn)的性質(zhì)和正方形的性質(zhì)可得∠FOC=40°,AO=OD=OC=OF,∠AOC=90°,再根據(jù)等腰三角形的性質(zhì)可求∠OFA的度數(shù).【詳解】∵正方形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)40°得到正方形ODEF,∴∠FOC=40°,AO=OD=OC=OF,∠AOC=90°∴∠AOF=130°,且AO=OF,∴∠OFA=25°故選B.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),等腰三角形的性質(zhì),熟練運(yùn)用旋轉(zhuǎn)的性質(zhì)解決問題是本題的關(guān)鍵.二、填空題(每小題3分,共24分)11、或【分析】如圖1,當(dāng)⊙F與Rt△ABC的邊AC相切時(shí),切點(diǎn)為H,連接FH,則HF⊥AC,解直角三角形得到AC=4,AB=5,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根據(jù)相似三角形的性質(zhì)得到DF=;如圖2,當(dāng)⊙F與Rt△ABC的邊AC相切時(shí),延長DE交AB于H,推出點(diǎn)H為切點(diǎn),DH為⊙F的直徑,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】如圖1,當(dāng)⊙F與Rt△ABC的邊AC相切時(shí),切點(diǎn)為H,連接FH,則HF⊥AC,∴DF=HF,∵Rt△ABC中,∠ACB=90°,BC=3,tanA==,∴AC=4,AB=5,將Rt△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△DEC,∴∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,∵FH⊥AC,CD⊥AC,∴FH∥CD,∴△EFH∽△EDC,∴=,∴=,解得:DF=;如圖2,當(dāng)⊙F與Rt△ABC的邊AC相切時(shí),延長DE交AB于H,∵∠A=∠D,∠AEH=∠DEC∴∠AHE=90°,∴點(diǎn)H為切點(diǎn),DH為⊙F的直徑,∴△DEC∽△DBH,∴=,∴=,∴DH=,∴DF=,綜上所述,當(dāng)FD=或時(shí),⊙F與Rt△ABC的邊相切,故答案為:或.【點(diǎn)睛】本題考查了切線的判定和性質(zhì),相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.12、【分析】首先求出圓錐的底面半徑,然后可得底面周長,問題得解.【詳解】解:∵扇形的半徑為10cm,做成的圓錐形帽子的高為8cm,∴圓錐的底面半徑為cm,∴底面周長為2π×6=12πcm,即這張扇形紙板的弧長是12πcm,故答案為:12π.【點(diǎn)睛】本題考查圓錐的計(jì)算,用到的知識(shí)點(diǎn)為:圓錐的底面周長=側(cè)面展開扇形的弧長.13、.【分析】由圖可知,三角板和量角器重疊部分的面積為扇形OAB的面積與△OBC面積的和,由此其解【詳解】解:∵∠AOB=120°,∴∠BOC=60°.在Rt△OBC中,OC=2cm,∠BOC=60°,∴.∴.故答案為:14、∠DAC【分析】由于∠BAD與∠BCD是同弧所對的圓周角,故∠BAD=∠BCD,故∠BAC-∠BCD=∠BAC-∠BAD,即可得出答案.【詳解】解:∵∠BAD=∠BCD,∴∠BAC-∠BCD=∠BAC-∠BAD=∠DAC,∵∠BAC-∠BCD=α∴∠DAC=α故答案為:∠DAC.【點(diǎn)睛】本題考查了圓周角的性質(zhì),掌握同弧所對的圓周角相等是解題的關(guān)鍵.15、【分析】首先在△ABC中,根據(jù)三角函數(shù)值計(jì)算出AC的長,再利用勾股定理計(jì)算出AD的長,然后根據(jù)余弦定義可算出cos∠ADC.【詳解】解:∵∠B=90°,sin∠ACB=,∴=,∵AB=2,∴AC=6,∵AC⊥CD,∴∠ACD=90°,∴AD===10,∴cos∠ADC==.故答案為:.【點(diǎn)睛】本題考查了解直角三角形,以及勾股定理的應(yīng)用,關(guān)鍵是利用三角函數(shù)值計(jì)算出AC的長,再利用勾股定理計(jì)算出AD的長.16、(,2).【詳解】解:如圖,當(dāng)點(diǎn)B與點(diǎn)D重合時(shí),△BEF面積最大,設(shè)BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點(diǎn)E坐標(biāo)(,2).故答案為:(,2).【點(diǎn)睛】本題考查翻折變換(折疊問題),利用數(shù)形結(jié)合思想解題是關(guān)鍵.17、,【分析】根據(jù)對稱軸是直線x=2,與x軸的兩個(gè)交點(diǎn)距離為6,可求出與x軸的兩個(gè)交點(diǎn)的坐標(biāo)為(-1,0),(5,0);再根據(jù)頂點(diǎn)與x軸的交點(diǎn)圍成的三角形面積等于9,可得頂點(diǎn)的縱坐標(biāo)為±1,然后利用頂點(diǎn)式求得拋物線的解析式即可.【詳解】解:∵對稱軸是直線x=2,與x軸的兩個(gè)交點(diǎn)距離為6,∴拋物線與x軸的兩個(gè)交點(diǎn)的坐標(biāo)為(-1,0),(5,0),設(shè)頂點(diǎn)坐標(biāo)為(2,y),∵頂點(diǎn)與x軸的交點(diǎn)圍成的三角形面積等于9,∴,∴y=1或y=-1,∴頂點(diǎn)坐標(biāo)為(2,1)或(2,-1),設(shè)函數(shù)解析式為y=a(x-2)2+1或y=a(x-2)2-1;把點(diǎn)(5,0)代入y=a(x-2)2+1得a=-;把點(diǎn)(5,0)代入y=a(x-2)2-1得a=;∴滿足上述全部條件的一條拋物線的解析式為y=-(x-2)2+1或y=(x-2)2-1.故答案為:,.【點(diǎn)睛】此題考查了二次函數(shù)的圖像與性質(zhì),待定系數(shù)法求函數(shù)解析式.解題的關(guān)鍵是理解題意,采用待定系數(shù)法求解析式,若給了頂點(diǎn),注意采用頂點(diǎn)式簡單.18、【分析】找出B點(diǎn)關(guān)于AC的對稱點(diǎn)D,連接DM,則DM就是PM+PB的最小值,求出即可.【詳解】解:連接DE交AC于P,連接BD,BP,由菱形的對角線互相垂直平分,可得B、D關(guān)于AC對稱,則PD=PB,
∴PE+PB=PE+PD=DE,
即DM就是PM+PB的最小值,
∵∠BAD=60°,AD=AB,
∴△ABD是等邊三角形,
∵AE=BE,
∴DE⊥AB(等腰三角形三線合一的性質(zhì))
在Rt△ADE中,DM==.
故PM+PB的最小值為.故答案為:.【點(diǎn)睛】本題考查的是最短線路問題及菱形的性質(zhì),由菱形的性質(zhì)得出點(diǎn)D是點(diǎn)B關(guān)于AC的對稱點(diǎn)是解答此題的關(guān)鍵.三、解答題(共66分)19、(1)見解析;(2)見解析;(3)見解析.【解析】(1)利用直角三角形斜邊上的中線等于斜邊的一半,可證出CG=EG.
(2)結(jié)論仍然成立,連接AG,過G點(diǎn)作MN⊥AD于M,與EF的延長線交于N點(diǎn);再證明△DAG≌△DCG,得出AG=CG;再證出△DMG≌△FNG,得到MG=NG;再證明△AMG≌△ENG,得出AG=EG;最后證出CG=EG.
(3)結(jié)論依然成立.過F作CD的平行線并延長CG交于M點(diǎn),連接EM、EC,過F作FN垂直于AB于N.由于G為FD中點(diǎn),易證△CDG≌△MFG,得到CD=FM,又因?yàn)锽E=EF,易證∠EFM=∠EBC,則△EFM≌△EBC,∠FEM=∠BEC,EM=EC,得出△MEC是等腰直角三角形,就可以得出結(jié)論.【詳解】(1)在RtΔFCD中,G為DF∴CG=1同理,在RtΔDEF中,EG=∴EG=CG.(2)如圖②,(1)中結(jié)論仍然成立,即EG=CG.
理由:連接AG,過G點(diǎn)作MN⊥AD于M,與EF的延長線交于N點(diǎn).
∴∠AMG=∠DMG=90°.
∵四邊形ABCD是正方形,
∴AD=CD=BC=AB,∠ADG=∠CDG.∠DAB=∠ABC=∠BCD=∠ADC=90°.
在△DAG和△DCG中,
AD=CD∠ADG=∠CDGDG=DG,
∴△DAG≌△DCG(SAS),
∴AG=CG.
∵G為DF的中點(diǎn),
∴GD=GF.
∵EF⊥BE,
∴∠BEF=90°,
∴∠BEF=∠BAD,
∴AD∥EF,
∴∠N=∠DMG=90°.∠DGM=∠FGNFG=DG∠MDG=∠NFG,
∴△DMG≌△FNG(ASA),
∴MG=NG.
∵∠DA∠AMG=∠N=90°,
∴四邊形AENM是矩形,
∴AM=EN,
在△AMG和△ENG中,
AM=EN∠AMG=∠ENGMG=NG,
∴△AMG≌△ENG(SAS),
∴AG=EG,
∴EG=CG;
(3)如圖③,(1)中的結(jié)論仍然成立.
理由:過F作CD的平行線并延長CG交于M點(diǎn),連接EM、EC,過F作FN⊥AB于N.
∵M(jìn)F∥CD,
∴∠FMG=∠DCG,∠MFD=∠CDG.∠AQF=∠ADC=90°
∵FN⊥AB,
∴∠FNH=∠ANF=90°.
∵G為FD中點(diǎn),
∴GD=GF.
在△MFG和△CDG中
∠FMG=∠DCG∠MFD=∠CDGGF=GD,
∴△CDG≌△MFG(AAS),
∴CD=FM.MG=CG.
∴MF=AB.
∵EF⊥BE,
∴∠BEF=90°.
∵∠NHF+∠HNF+∠NFH=∠BEF+∠EHB+∠EBH=180°,
∴∠NFH=∠EBH.
∵∠A=∠ANF=∠AMF=90°,
∴四邊形ANFQ是矩形,
∴∠MFN=90°.
∴∠MFN=∠CBN,
∴∠MFN+∠NFE=∠CBN+∠EBH,
∴∠MFE=∠CBE.
在△EFM和△EBC中
MF=AB∠MFE=∠CBEEF=EB,
∴△EFM≌△EBC(SAS),
∴ME=CE.,∠FEM=∠BEC,
∵∠【點(diǎn)睛】考查了正方形的性質(zhì)的運(yùn)用,矩形的判定就性質(zhì)的運(yùn)用,旋轉(zhuǎn)的性質(zhì)的運(yùn)用,直角三角形的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,解答時(shí)證明三角形全等是關(guān)鍵.20、(1)20%;(2)12.1.【解析】試題分析:(1)經(jīng)過兩次增長,求年平均增長率的問題,應(yīng)該明確原來的基數(shù),增長后的結(jié)果.設(shè)這兩年的年平均增長率為x,則經(jīng)過兩次增長以后圖書館有書7100(1+x)2本,即可列方程求解;(2)先求出2017年圖書借閱總量的最小值,再求出2016年的人均借閱量,2017年的人均借閱量,進(jìn)一步求得a的值至少是多少.試題解析:(1)設(shè)該社區(qū)的圖書借閱總量從2014年至2016年的年平均增長率為x,根據(jù)題意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:該社區(qū)的圖書借閱總量從2014年至2016年的年平均增長率為20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a的值至少是12.1.考點(diǎn):一元二次方程的應(yīng)用;一元一次不等式的應(yīng)用;最值問題;增長率問題.21、(1)或;(2)【分析】(1)將點(diǎn)C、D的坐標(biāo)代入拋物線表達(dá)式,即可求解;(2)當(dāng)△AOC∽△AEB時(shí),===,求出yE=,即可求出點(diǎn)E坐標(biāo).【詳解】解:(1)由題可列方程組:,解得:,∴拋物線解析式為:或;(2)由題,∠AOC=90°,AC=,AB=4,設(shè)直線AC的解析式為:y=kx+b,則,解得,∴直線AC的解析式為:y=-2x-2,
當(dāng)△AOC∽△AEB時(shí),===,∵S△AOC=1,∴S△AEB=,∴AB×|yE|=,AB=4,則yE=,則點(diǎn)E(,).【點(diǎn)睛】本題考查的是二次函數(shù)綜合運(yùn)用,涉及到一次函數(shù)、點(diǎn)的對稱性、三角形相似、圖形的面積計(jì)算等.22、(1);(2)成立,理由見解析;(3)【分析】(1)如圖1,過點(diǎn)D作BC的垂線,與BC的延長線交于點(diǎn)E,由垂直的性質(zhì)就可以得出△ABC≌△BDE,就有DE=BC=a進(jìn)而由三角形的面積公式得出結(jié)論;
(2)如圖2,過點(diǎn)D作BC的垂線,與BC的延長線交于點(diǎn)E,由垂直的性質(zhì)就可以得出△ABC≌△BDE,就有.DE=BC=a進(jìn)而由三角形的面積公式得出結(jié)論;
(3)如圖3,過點(diǎn)A作AF⊥BC與F,過點(diǎn)D作DE⊥BC的延長線于點(diǎn)E,由等腰三角形的性質(zhì)可以得出BF=BC,由條件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面積公式就可以得出結(jié)論.【詳解】解:(1)如圖1,過點(diǎn)D作DE⊥CB交CB的延長線于E,
∴∠BED=∠ACB=90°,
由旋轉(zhuǎn)知,AB=BD,∠ABD=90°,
∴∠ABC+∠DBE=90°,
∵∠A+∠ABC=90°,
∴∠A=∠DBE,
在△ABC和△BDE中,
,
∴△ABC≌△BDE(AAS)
∴BC=DE=a.
∵S△BCD=BC?DE=
故答案為(2)(1)中結(jié)論仍然成立,理由:如圖,過點(diǎn)作邊上的高,在中,∵,由旋轉(zhuǎn)可知:,∴,∴,又∵,∴,∴,(3).如圖3,過點(diǎn)A作AF⊥BC與F,過點(diǎn)D作DE⊥BC的延長線于點(diǎn)E,
∴∠AFB=∠E=90°,BF=BC=a.
∴∠FAB+∠ABF=90°
∵∠ABD=90°,
∴∠ABF+∠DBE=90°,
∴∠FAB=∠EBD
∵線段BD是由線段AB旋轉(zhuǎn)得到的,
∴AB=BD
在△AFB和△BED中,
,
∴△AFB≌△BED(AAS),
∴BF=DE=a.
∵S△BCD=BC?DE=?a?a=.
∴△BCD的面積為.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了直角三角形的性質(zhì)的運(yùn)用,等腰三角形的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,三角形的面積公式的運(yùn)用,判斷出△ABC≌△BDE是解本題的關(guān)鍵.23、(1)y=-x2+4x;(2)點(diǎn)P不在直線MB上,理由見解析;②當(dāng)t=時(shí),以點(diǎn)P,N,C,D為頂點(diǎn)的多邊形面積有最大值,這個(gè)最大值為.【分析】(1)設(shè)拋物線解析式為,將代入求出即可解決問題;(2)①由(1)中拋物線的解析式可以求出點(diǎn)的坐標(biāo),從而可以求出的解析式,再將點(diǎn)的坐標(biāo)代入直線的解析式就可以判斷點(diǎn)是否在直線上.②設(shè)出點(diǎn),,可以表示出的值,根據(jù)梯形的面積公式可以表示出與的函數(shù)關(guān)系式,從而可以求出結(jié)論.【詳解】解:(1)設(shè)拋物線解析式為,把代入解析式得,解得,,函數(shù)解析式為,即.(2)①,當(dāng)時(shí),,,,,設(shè)直線的解析式為:,則,解得:,直線的解析式為:,當(dāng)時(shí),,,當(dāng)時(shí),,當(dāng)時(shí),點(diǎn)不在直線上.②存在最大值.理由如下:點(diǎn)在軸的非負(fù)半軸上,且在拋物線上,.點(diǎn),的坐標(biāo)分別為、,,,,I.當(dāng),即或時(shí),以點(diǎn),,,為頂點(diǎn)的多邊形是三角形,此三角形的高為,,II.當(dāng)時(shí),以點(diǎn),,,為頂點(diǎn)的多邊形是四邊形,,,,,,,時(shí),有最大值為,綜合以上可得,當(dāng)時(shí),以點(diǎn),,,為頂點(diǎn)的多邊形面積有最大值,這個(gè)最大值為.【點(diǎn)睛】此題主要考查了待
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人工勞務(wù)承包合同范本
- 超市股東合作協(xié)議書范本
- 多股東入股協(xié)議書范本
- 北師大版數(shù)學(xué)八年級(jí)上冊《中位數(shù)與眾數(shù)》聽評課記錄2
- 蘇州科技大學(xué)《服裝材料學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川工程職業(yè)技術(shù)學(xué)院《西方經(jīng)濟(jì)學(xué)B》2023-2024學(xué)年第二學(xué)期期末試卷
- 青海民族大學(xué)《化工發(fā)展與人類進(jìn)步》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖南司法警官職業(yè)學(xué)院《商務(wù)與管理溝通(雙語)》2023-2024學(xué)年第二學(xué)期期末試卷
- 哈爾濱傳媒職業(yè)學(xué)院《公文寫作》2023-2024學(xué)年第二學(xué)期期末試卷
- 大灣區(qū)畢業(yè)班數(shù)學(xué)試卷
- 2023年廣東省招聘事業(yè)單位人員考試真題及答案
- 質(zhì)量管理與產(chǎn)品質(zhì)量保障措施
- 全國自然教育中長期發(fā)展規(guī)劃
- 露天電影方案
- 裝配式預(yù)制混凝土框架結(jié)構(gòu)抗震性能研究
- 2024年長沙市房地產(chǎn)市場分析報(bào)告
- 造影劑對比劑外滲預(yù)防與處理課件
- 機(jī)修崗位述職個(gè)人述職報(bào)告
- 光伏發(fā)電項(xiàng)目 投標(biāo)方案(技術(shù)方案)
- 幼兒平衡車訓(xùn)練課程設(shè)計(jì)
- 創(chuàng)業(yè)計(jì)劃路演-美甲
評論
0/150
提交評論