2023-2024學年江蘇省海安市八校聯(lián)考數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第1頁
2023-2024學年江蘇省海安市八校聯(lián)考數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第2頁
2023-2024學年江蘇省海安市八校聯(lián)考數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第3頁
2023-2024學年江蘇省海安市八校聯(lián)考數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第4頁
2023-2024學年江蘇省海安市八校聯(lián)考數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省海安市八校聯(lián)考數(shù)學九年級第一學期期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.某天的體育課上,老師測量了班級同學的身高,恰巧小明今日請假沒來,經(jīng)過計算得知,除了小明外,該班其他同學身高的平均數(shù)為172,方差為,第二天,小明來到學校,老師幫他補測了身高,發(fā)現(xiàn)他的身高也是172,此時全班同學身高的方差為,那么與的大小關系是()A. B. C. D.無法判斷2.在一個箱子里放有1個自球和2個紅球,它們除顏色外其余都相同,從箱子里任意摸出1個球,摸到白球的概率是()A.1 B. C. D.3.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°4.如圖,AB為⊙O的直徑,C、D是⊙O上的兩點,∠BAC=20°,AD=CD,則∠DAC的度數(shù)是()A.30° B.35° C.45° D.70°5.已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結論:①該拋物線的對稱軸在y軸左側;②關于x的方程ax2+bx+c+2=0無實數(shù)根;③a﹣b+c≥0;④的最小值為1.其中,正確結論的個數(shù)為()A.1個 B.2個 C.1個 D.4個6.一個不透明的袋中,裝有2個黃球、3個紅球和5個白球,它們除顏色外都相同.從袋中任意摸出一個球,是白球的概率是()A. B. C. D.7.如圖,經(jīng)過原點的⊙與軸分別交于兩點,點是劣弧上一點,則()A.是銳角 B.是直角 C.是鈍角 D.大小無法確定8.如圖方格紙中每個小正方形的邊長均為1,點P、A、C都在小正方形的頂點上.某人從點P出發(fā),沿過A、C、P三點的圓走一周,則這個人所走的路程是()A. B. C. D.不確定9.對于反比例函數(shù),下列說法錯誤的是()A.它的圖象分別位于第二、四象限B.它的圖象關于成軸對稱C.若點,在該函數(shù)圖像上,則D.的值隨值的增大而減小10.在?ABCD中,∠A﹣∠B=40°,則∠C的度數(shù)為()A.70° B.40° C.110° D.150°11.在實數(shù)3.14,﹣π,,﹣中,倒數(shù)最小的數(shù)是()A. B. C.﹣π D.3.1412.如圖,在平行四邊形中,、是上兩點,,連接、、、,添加一個條件,使四邊形是矩形,這個條件是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,在正方形ABCD中,AB=4,點M在CD的邊上,且DM=1,ΔAEM與ΔADM關于AM所在的直線對稱,將ΔADM按順時針方向繞點A旋轉90°得到ΔABF,連接EF,則線段EF的長為_________14.如圖,圓錐的底面直徑,母線的中點處有一食物,一只小螞蟻從點出發(fā)沿圓錐表面到處覓食,螞蟻走過的最短路線長為___________15.寫出一個具有性質(zhì)“在每個象限內(nèi)y隨x的增大而減小”的反比例函數(shù)的表達式為________.16.如圖,圓弧形拱橋的跨徑米,拱高米,則拱橋的半徑為__________米.17.《九章算術》作為古代中國乃至東方的第一部自成體系的數(shù)學專著,與古希臘的《幾何原本》并稱現(xiàn)代數(shù)學的兩大源泉.在《九章算術》中記載有一問題“今有圓材埋在壁中,不知大?。凿忎徶?,深一寸,鋸道長一尺,問徑幾何?”小輝同學根據(jù)原文題意,畫出圓材截面圖如圖所示,已知:鋸口深為1寸,鋸道尺(1尺=10寸),則該圓材的直徑為______寸.18.如圖,是某公園一圓形噴水池,在池中心豎直安裝一根水管OA=1.25m,A處是噴頭,水流在各個方向沿形狀相同的拋物線落下,水落地后形成一個圓,圓心為O,直徑為線段CB.建立如圖所示的平面直角坐標系,若水流路線達到最高處時,到x軸的距離為2.25m,到y(tǒng)軸的距離為1m,則水落地后形成的圓的直徑CB=_____m.三、解答題(共78分)19.(8分)如圖,△ABC內(nèi)接于⊙O,AB=AC=10,BC=12,點E是弧BC的中點.(1)過點E作BC的平行線交AB的延長線于點D,求證:DE是⊙O的切線.(2)點F是弧AC的中點,求EF的長.20.(8分)在平面直角坐標系xOy中,已知拋物線G:y=ax2﹣2ax+4(a≠0).(1)當a=1時,①拋物線G的對稱軸為x=;②若在拋物線G上有兩點(2,y1),(m,y2),且y2>y1,則m的取值范圍是;(2)拋物線G的對稱軸與x軸交于點M,點M與點A關于y軸對稱,將點M向右平移3個單位得到點B,若拋物線G與線段AB恰有一個公共點,結合圖象,求a的取值范圍.21.(8分)如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)y2=(m≠0)的圖象交于點A(-1,6),B(a,-2).(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)根據(jù)圖象直接寫出y1>y2時,x的取值范圍.22.(10分)如圖,在矩形的邊上取一點,連接并延長和的延長線交于點,過點作的垂線與的延長線交于點,與交于點,連接.(1)當且時,求的長;(2)求證:;(3)連接,求證:.23.(10分)如圖,在△ABC中,CD是邊AB上的中線,∠B是銳角,sinB=,tanA=,AC=,(1)求∠B的度數(shù)和AB的長.(2)求tan∠CDB的值.24.(10分)如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A、B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.(1)求證:AC是⊙O的切線:(2)若BF=8,DF=,求⊙O的半徑;(3)若∠ADB=60°,BD=1,求陰影部分的面積.(結果保留根號)25.(12分)請用學過的方法研究一類新函數(shù)(為常數(shù),)的圖象和性質(zhì).(1)在給出的平面直角坐標系中畫出函數(shù)的圖象;(2)對于函數(shù),當自變量的值增大時,函數(shù)值怎樣變化?26.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點M是AB邊的中點.(1)如圖1,若CM=,求△ACB的周長;(2)如圖2,若N為AC的中點,將線段CN以C為旋轉中心順時針旋轉60°,使點N至點D處,連接BD交CM于點F,連接MD,取MD的中點E,連接EF.求證:3EF=2MF.

參考答案一、選擇題(每題4分,共48分)1、B【分析】設該班的人數(shù)有n人,除小明外,其他人的身高為x1,x2……xn-1,根據(jù)平均數(shù)的定義可知:算上小明后,平均身高仍為172cm,然后根據(jù)方差公式比較大小即可.【詳解】解:設該班的人數(shù)有n人,除小明外,其他人的身高為x1,x2……xn-1,根據(jù)平均數(shù)的定義可知:算上小明后,平均身高仍為172cm根據(jù)方差公式:∵∴即故選B.【點睛】此題考查的是比較方差的大小,掌握方差公式是解決此題的關鍵.2、C【解析】結合題意求得箱子中球的總個數(shù),再根據(jù)概率公式即可求得答案.【詳解】依題可得,箱子中一共有球:(個),∴從箱子中任意摸出一個球,是白球的概率.故答案為:C.【點睛】此題考查了概率公式的應用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.3、C【解析】根據(jù)扇形的面積公式列方程即可得到結論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點睛】本題考了扇形面積的計算的應用,解題的關鍵是熟練掌握扇形面積計算公式:扇形的面積=.4、B【分析】連接BD,如圖,利用圓周角定理得到∠ADB=90°,∠DBC=∠BAC=20°,則∠ADC=110°,然后根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和計算∠DAC的度數(shù).【詳解】解:連接BD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,∵∠DBC=∠BAC=20°,∴∠ADC=90°+20°=110°,∵DA=DC,∴∠DAC=∠DCA,∴∠DAC=(180°﹣110°)=35°.故選:B.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.5、D【解析】本題考察二次函數(shù)的基本性質(zhì),一元二次方程根的判別式等知識點.【詳解】解:∵,∴拋物線的對稱軸<0,∴該拋物線的對稱軸在軸左側,故①正確;∵拋物線與軸最多有一個交點,∴∴關于的方程中∴關于的方程無實數(shù)根,故②正確;∵拋物線與軸最多有一個交點,∴當時,≥0正確,故③正確;當時,,故④正確.故選D.【點睛】本題的解題關鍵是熟悉函數(shù)的系數(shù)之間的關系,二次函數(shù)和一元二次方程的關系,難點是第四問的證明,要考慮到不等式的轉化.6、A【分析】由題意可得,共有10種等可能的結果,其中從口袋中任意摸出一個球是白球的有5種情況,利用概率公式即可求得答案.【詳解】解:∵從裝有2個黃球、3個紅球和5個白球的袋中任意摸出一個球有10種等可能結果,其中摸出的球是白球的結果有5種,∴從袋中任意摸出一個球,是白球的概率是=,故選A.【點睛】此題考查了概率公式,明確概率的意義是解答問題的關鍵,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.7、B【分析】根據(jù)圓周角定理的推論即可得出答案.【詳解】∵和對應著同一段弧,∴,∴是直角.故選:B.【點睛】本題主要考查圓周角定理的推論,掌握圓周角定理的推論是解題的關鍵.8、C【分析】根據(jù)題意作△ACP的外接圓,根據(jù)網(wǎng)格的特點確定圓心與半徑,求出其周長即可求解.【詳解】如圖,△ACP的外接圓是以點O為圓心,OA為半徑的圓,∵AC=,AP=,CP=,∴AC2=AP2+CP2∴△ACP是等腰直角三角形∴O點是AC的中點,∴AO=CO=OP=∴這個人所走的路程是故選C.【點睛】此題主要考查三角形的外接圓,解題的關鍵是熟知外接圓的作法與網(wǎng)格的特點.9、D【分析】根據(jù)反比例函數(shù)的性質(zhì)對各選項逐一分析即可.【詳解】解:反比例函數(shù),,圖像在二、四象限,故A正確.反比例函數(shù),當時,圖像關于對稱;當時,圖像關于對稱,故B正確當,的值隨值的增大而增大,,則,故C正確在第二象限或者第四象限,的值隨值的增大而增大,故D錯誤故選D【點睛】本題主要考查了反比例函數(shù)的性質(zhì).10、C【分析】由題意根據(jù)平行四邊形的對角相等以及鄰角之和為180°,即可求出該平行四邊形各個內(nèi)角的度數(shù).【詳解】解:由題意畫出圖形如下所示:則∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠C=∠A=110°.故選:C.【點睛】本題考查平行四邊形的性質(zhì),解題的關鍵是掌握平行四邊形的對角相等以及鄰角之和為180°進行分析.11、A【解析】先根據(jù)倒數(shù)的定義計算,再比較大小解答.【詳解】解:在3.14,﹣π,,﹣中,倒數(shù)最小的數(shù)是兩個負數(shù)中一個,所以先求兩個負數(shù)的倒數(shù):﹣π的倒數(shù)是﹣≈﹣0.3183,﹣的倒數(shù)是﹣≈﹣4472,所以﹣>﹣,故選:A.【點睛】本題考查了倒數(shù)的定義.解題的關鍵是掌握倒數(shù)的定義,會比較實數(shù)的大?。?2、A【分析】由平行四邊形的性質(zhì)可知:,,再證明即可證明四邊形是平行四邊形.【詳解】∵四邊形是平行四邊形,∴,,∵對角線上的兩點、滿足,∴,即,∴四邊形是平行四邊形,∵,∴,∴四邊形是矩形.故選A.【點睛】本題考查了矩形的判定,平行四邊形的判定與性質(zhì),解題的關鍵是靈活運用所學知識解決問題.二、填空題(每題4分,共24分)13、2【分析】連接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.在Rt△BCM中,利用勾股定理即可得到BM的值.【詳解】如圖,連接BM.∵△AEM與△ADM關于AM所在的直線對稱,∴AE=AD,∠MAD=∠MAE.∵△ADM按照順時針方向繞點A旋轉90°得到△ABF,∴AF=AM,∠FAB=∠MAD,∴∠FAB=∠MAE,∴∠FAB+∠BAE=∠BAE+∠MAE,∴∠FAE=∠MAB,∴△FAE≌△MAB(SAS),∴EF=BM.因為正方形ABCD的邊長為1,則MC=1-1=3,BC=1.在Rt△BCM中,∵BC2+MC2=BM2,∴12+32=BM2,解得:BM=2,∴EF=BM=2.故答案為:2.【點睛】本題考查了正方形的性質(zhì),勾股定理,全等三角形的判定與性質(zhì)以及旋轉的性質(zhì):對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.14、15【分析】先將圓錐的側面展開圖畫出來,然后根據(jù)弧長公式求出的度數(shù),然后利用等邊三角形的性質(zhì)和特殊角的三角函數(shù)在即可求出AD的長度.【詳解】圓錐的側面展開圖如下圖:∵圓錐的底面直徑∴底面周長為設則有解得又∴為等邊三角形為PB中點∴螞蟻從點出發(fā)沿圓錐表面到處覓食,螞蟻走過的最短路線長為故答案為:.【點睛】本題主要考查圓錐的側面展開圖,弧長公式和解直角三角形,掌握弧長公式和特殊角的三角函數(shù)值是解題的關鍵.15、y=(答案不唯一)【解析】根據(jù)反比例函數(shù)的性質(zhì),只需要當k>0即可,答案不唯一.故答案為y=(答案不唯一).16、【解析】設圓心為O,半徑長為r米,根據(jù)垂徑定理可得AD=BD=6,則OD=(r-4),然后利用勾股定理在Rt△AOD中求解即可.【詳解】解:設圓心為O,半徑長為r米,可知AD=BD=6米,OD=(r-4)米在Rt△AOD中,根據(jù)勾股定理得:,解得r=6.5米,即半徑長為6.5米.故答案為6.5【點睛】本題考查了垂徑定理的應用,要熟練掌握勾股定理的性質(zhì),能夠運用到實際生活當中.17、1.【分析】設的半徑為,在中,,則有,解方程即可.【詳解】設的半徑為.在中,,則有,解得,∴的直徑為1寸,故答案為1.【點睛】本題考查垂徑定理、勾股定理等知識,解題的關鍵是學會利用參數(shù)構建方程解決問題,屬于中考常考題型.18、1【分析】設y軸右側的拋物線解析式為:y=a(x?1)2+2.21,將A(0,1.21)代入,求得a,從而可得拋物線的解析式,再令函數(shù)值為0,解方程可得點B坐標,從而可得CB的長.【詳解】解:設y軸右側的拋物線解析式為:y=a(x﹣1)2+2.21∵點A(0,1.21)在拋物線上∴1.21=a(0﹣1)2+2.21解得:a=﹣1∴拋物線的解析式為:y=﹣(x﹣1)2+2.21令y=0得:0=﹣(x﹣1)2+2.21解得:x=2.1或x=﹣0.1(舍去)∴點B坐標為(﹣2.1,0)∴OB=OC=2.1∴CB=1故答案為:1.【點睛】本題考查了二次函數(shù)在實際問題中的應用,明確二次函數(shù)的相關性質(zhì)及正確的解方程,是解題的關鍵.三、解答題(共78分)19、(1)見解析;(2)【分析】(1)連接AE,由等弦對等弧可得,進而推出,可知AE為⊙O的直徑,再由等腰三角形三線合一得到AE⊥BC,根據(jù)DE∥BC即可得DE⊥AE,即可得證;(2)連接BE,AF,OF,OF與AC交于點H,AE與BC交于點G,利用勾股定理求出AG,然后求直徑AE,再利用垂徑定理求出HF,最后用勾股定理求AF和EF.【詳解】證明:(1)如圖,連接AE,∵AB=AC∴又∵點E是弧BC的中點,即∴,即∴AE為⊙O的直徑,∵∴∠BAE=∠CAE又∵AB=AC∴AE⊥BC∵DE∥BC∴DE⊥AE∴DE是⊙O的切線.(2)如圖,連接BE,AF,OF,OF與AC交于點H,AE與BC交于點G,∴∠ABE=∠AFE=90°,OF⊥AC由(1)可知AG垂直平分BC,∴BG=BC=6在Rt△ABG中,∵cos∠BAE=cos∠BAG∴,即∴AE=∴⊙O的直徑為,半徑為.設HF=x,則OH=∴在Rt△AHO中,即,解得∴∴【點睛】本題考查圓的綜合問題,需要熟練掌握切線的證明方法,以及垂徑定理和勾股定理的運用是關鍵.20、(1)①1;②m>2或m<0;(2)﹣<a≤﹣或a=1.【分析】(1)當a=1時,①根據(jù)二次函數(shù)一般式對稱軸公式,即可求得拋物線G的對稱軸;②根據(jù)拋物線的對稱性求得關于對稱軸的對稱點為,再利用二次函數(shù)圖像的增減性即可求得答案;(2)根據(jù)平移的性質(zhì)得出、,由題意根據(jù)函數(shù)圖象分三種情況進行討論,即可得解.【詳解】解:(1)①∵當a=1時,拋物線G:y=ax2﹣2ax+1(a≠0)為:∴拋物線G的對稱軸為;②畫出函數(shù)圖象:∵在拋物線G上有兩點(2,y1),(m,y2),且y2>y1,,∴①當時,隨的增大而增大,此時有;②當時,隨的增大而減小,拋物線G上點關于對稱軸的對稱點為,此時有.∴m的取值范圍是或;(2)∵拋物線G:y=ax2﹣2ax+1(a≠0的對稱軸為x=1,且對稱軸與x軸交于點M∴點M的坐標為(1,0)∵點M與點A關于y軸對稱∴點A的坐標為(﹣1,0)∵點M右移3個單位得到點B∴點B的坐標為(1,0)依題意,拋物線G與線段AB恰有一個公共點把點A(﹣1,0)代入y=ax2﹣2ax+1,可得;把點B(1,0)代入y=ax2﹣2ax+1,可得;把點M(1,0)代入y=ax2﹣2ax+1,可得a=1.根據(jù)所畫圖象可知拋物線G與線段AB恰有一個公共點時可得:或.故答案是:(1)①1;②m>2或m<0;(2)或【點睛】本題考查了二次函數(shù)圖像的性質(zhì)、二次函數(shù)圖象上的點的坐標特征以及坐標平移,解決本題的關鍵是綜合利用二次函數(shù)圖象的性質(zhì).21、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【分析】(1)把點A坐標代入反比例函數(shù)求出k的值,也就求出了反比例函數(shù)解析式,再把點B的坐標代入反比例函數(shù)解析式求出a的值,得到點B的坐標,然后利用待定系數(shù)法即可求出一次函數(shù)解析式;(2)找出直線在一次函數(shù)圖形的上方的自變量x的取值即可.【詳解】解:(1)把點A(﹣1,6)代入反比例函數(shù)(m≠0)得:m=﹣1×6=﹣6,∴.將B(a,﹣2)代入得:,a=1,∴B(1,﹣2),將A(﹣1,6),B(1,﹣2)代入一次函數(shù)y1=kx+b得:,∴,∴;(2)由函數(shù)圖象可得:x<﹣1或0<x<1.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,利用數(shù)形結合思想解題是本題的關鍵.22、(1);(2)見解析;(3)見解析【分析】(1)根據(jù)已知條件先求出CE的長,再證明,在Rt△CHE中解三角形可求得EH的長,最后利用勾股定理求CH的長;(2)證明,進而得出結果;(3)由(2)得,進而,即,再結合,可得出,進一步得出結果.【詳解】(1)解:∵矩形,,∴.而,,∴,又∵,,∴,易得.∴,∴.∴.(2)證明:∵矩形,,∴,而,∴,∴,∴;(3)證明:由(2)得,∴,即,而,∴,∴.【點睛】本題主要考查相似三角形的判定與性質(zhì)以及解直角三角形,關鍵是掌握基本的概念與性質(zhì).23、(1)∠B的度數(shù)為45°,AB的值為3;(1)tan∠CDB的值為1.【分析】(1)作CE⊥AB于E,設CE=x,利用∠A的正切可得到AE=1x,則根據(jù)勾股定理得到AC=x,所以x=,解得x=1,于是得到CE=1,AE=1,接著利用sinB=得到∠B=45°,則BE=CE=1,最后計算AE+BE得到AB的長;(1)利用CD為中線得到BD=AB=1.5,則DE=BD-BE=0.5,然后根據(jù)正切的定義求解.【詳解】(1)作CE⊥AB于E,設CE=x,在Rt△ACE中,∵tanA==,∴AE=1x,∴AC==x,∴x=,解得x=1,∴CE=1,AE=1,在Rt△BCE中,∵sinB=,∴∠B=45°,∴△BCE為等腰直角三角形,∴BE=CE=1,∴AB=AE+BE=3,答:∠B的度數(shù)為45°,AB的值為3;(1)∵CD為中線,∴BD=AB=1.5,∴DE=BD﹣BE=1.5﹣1=0.5,∴tan∠CDE===1,即tan∠CDB的值為1.【點睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.解決此類題目的關鍵是熟練應用勾股定理和銳角三角函數(shù)的定義.24、(1)證明見解析;(2)6;(3).【解析】(1)連接OA、OD,如圖,利用垂徑定理的推論得到OD⊥BE,再利用CA=CF得到∠CAF=∠CFA,然后利用角度的代換可證明∠OAD+∠CAF=,則OA⊥AC,從而根據(jù)切線的判定定理得到結論;(2)設⊙0的半徑為r,則OF=8-r,在Rt△ODF中利用勾股定理得到,然后解方程即可;(3)先證明△BOD為等腰直角三角形得到OB=,則OA=,再利用圓周角定理得到∠AOB=2∠ADB=,則∠AOE=,接著在Rt△OAC中計算出AC,然后用一個直角三角形的面積減去一個扇形的面積去計算陰影部分的面積.【詳解】(1)證明:連接OA、OD,如圖,∵D為BE的下半圓弧的中點,∴OD⊥BE,∴∠ODF+∠OFD=90°,∵CA=CF,∴∠CAF=∠CFA,而∠CFA=∠OFD,∴∠ODF+∠CAF=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切線;(2)解:設⊙O的半徑為r,則OF=8﹣r,在Rt△ODF中,(8﹣r)2+r2=()2,解得r1=6,r2=2(舍去),即⊙O的半徑為6;(3)解:∵∠BOD=90°,OB=OD,∴△BOD為等腰直角三角形,∴OB=BD=,∴OA=,∵∠AOB=2∠ADB=120°,∴∠AOE=60°,在Rt△OAC中,AC=OA=,∴陰影部分的面積=??﹣=.【點睛】本題主要考查圓、圓的切線及與圓相關的不規(guī)則陰影的面積,需綜合運用各知識求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論