



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
第頁共頁新課標高中必修數(shù)學二:向量的翻轉(zhuǎn),讓你輕松化解難題讓你輕松化解難題在高中數(shù)學的學習中,向量一直以來都是比較難以掌握的一個概念,其理論性較強,計算方法也相對抽象。而在新課標中,向量的翻轉(zhuǎn)是一個相對比較簡單而實用的概念,通過翻轉(zhuǎn)向量可以輕松地解決一些問題。翻轉(zhuǎn)向量的概念向量是一個具有大小和方向的量,它不僅可以作為數(shù)學研究中的一個重要工具,也是生活中許多物理問題的基礎。而翻轉(zhuǎn)向量的概念就是將向量的方向翻轉(zhuǎn)180度,即將其取反。如下圖所示,向量$\vec{AB}$翻轉(zhuǎn)之后變成了向量$\vec{BA}$。向量的翻轉(zhuǎn)與數(shù)學問題向量的翻轉(zhuǎn)在解決一些數(shù)學問題中是十分方便和實用的。例如在解決幾何問題中,我們有時需要求兩條直線的夾角,而兩條直線的夾角可以通過兩個向量的夾角來求。而有時候兩條直線的夾角比較難以計算,此時我們可以通過翻轉(zhuǎn)其中一個向量來求取兩個向量的夾角,如下圖所示:在圖中,我們要求的是向量$\vec{a}$和向量$\vec$的夾角,但我么需要知道向量$\vec{a}$和$\vec$的方向,而這兩個向量的方向是相對的,如果我們將其中一個向量$\vec$取反,則向量$\vec{a}$與向量$-\vec$的夾角就等于向量$\vec{a}$與向量$\vec$的夾角了。向量的翻轉(zhuǎn)還可以在求兩個向量的和、差或點積時使用。例如,兩個向量的差可以通過翻轉(zhuǎn)其中一個向量再相加來求取,如下圖所示:在圖中,向量$\vec{BA}$可以通過向量$\vec{AB}$翻轉(zhuǎn)180度得到,此時向量$\vec{BA}$即為$-\vec{AB}$,所以向量$\vec{BA}$和向量$\vec{AC}$的和就可以寫成向量$\vec{AB}$和翻轉(zhuǎn)的向量$-\vec{AB}$的和了。除此之外,向量的翻轉(zhuǎn)在幾何圖形的對稱問題中也十分常見,例如平面上的對稱圖形有時需要進行翻轉(zhuǎn)操作,從而得到一個新的圖形,我們可以將這個翻轉(zhuǎn)操作看成對某個向量進行翻轉(zhuǎn)操作。再比如,在三角函數(shù)中,正弦函數(shù)和余弦函數(shù)的圖像也可以通過進行翻轉(zhuǎn)操作來獲得。練習題現(xiàn)在,我們來做一個練習題,看看是否能夠熟練地使用向量的翻轉(zhuǎn)。已知向量$\vec{a}=\begin{pmatrix}-1\\2\end{pmatrix}$,$\vec=\begin{pmatrix}3\\4\end{pmatrix}$,求向量$\vec{c}=\vec{a}-\vec$和向量$\vecn5rkigh=\vec{c}+\vec$。解法:向量$\vec{c}$可以用向量$\vec$翻轉(zhuǎn)再相加的方法來求,即:$$\vec{c}=\vec{a}-\vec=\vec{a}+(-\vec)$$將向量$\vec$的坐標取相反數(shù),則$-\vec=\begin{pmatrix}-3\\-4\end{pmatrix}$,所以$\vec{c}=\vec{a}+(-\vec)=\begin{pmatrix}-1\\2\end{pmatrix}+\begin{pmatrix}-3\\-4\end{pmatrix}=\begin{pmatrix}-4\\-2\end{pmatrix}$向量$\vec1vo5vos$可以直接用向量$\vec{c}$和向量$\vec$的和來求,即:$$\vecvmq54nq=\vec{c}+\vec=\begin{pmatrix}-4\\-2\end{pmatrix}+\begin{pmatrix}3\\4\end{pmatrix}=\begin{pmatrix}-1\\2\end{pmatrix}=\vec{a}$$所以,向量$\vec{c}=\begin{pmatrix}-4\\-2\end{pmatrix}$,向量$\vecm4ktxaz=\vec{a}=\begin{pmatrix}-1\\2\e
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國防火木門行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國重型涂料行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國通信業(yè)務行業(yè)發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國運輸包裝行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國軟木地板行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國跨境電子商務行業(yè)市場深度調(diào)研及競爭格局與投資前景研究報告
- 2025-2030中國超聲波氣體檢漏儀行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國裝卸、脫氣和放氣機器人行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國血管生成素1受體行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國蒸汽吸附分析儀行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- Oracle制造行業(yè)解決方案
- 2022膀胱癌診療指南主要內(nèi)容
- 污水處理設備調(diào)試及試運行方案
- GB/T 4802.2-2008紡織品織物起毛起球性能的測定第2部分:改型馬丁代爾法
- GB 14934-2016食品安全國家標準消毒餐(飲)具
- 輔警考試試題
- 蘇科版三年級上冊勞動第一課《包書皮》課件(定稿)
- 框架結(jié)構(gòu)柱、梁板模板安裝技術交底
- 二年級數(shù)學期中測試卷(含答案)
- 簡約紅色五四青年節(jié)活動策劃PPT模板
- 年產(chǎn)萬噸丙烯酸工藝設計
評論
0/150
提交評論