廣東省云浮2024屆高三下學(xué)期模擬(一)測(cè)試數(shù)學(xué)試題_第1頁(yè)
廣東省云浮2024屆高三下學(xué)期模擬(一)測(cè)試數(shù)學(xué)試題_第2頁(yè)
廣東省云浮2024屆高三下學(xué)期模擬(一)測(cè)試數(shù)學(xué)試題_第3頁(yè)
廣東省云浮2024屆高三下學(xué)期模擬(一)測(cè)試數(shù)學(xué)試題_第4頁(yè)
廣東省云浮2024屆高三下學(xué)期模擬(一)測(cè)試數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省云浮2024屆高三下學(xué)期模擬(一)測(cè)試數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知(為虛數(shù)單位,為的共軛復(fù)數(shù)),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在().A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知函數(shù)在區(qū)間有三個(gè)零點(diǎn),,,且,若,則的最小正周期為()A. B. C. D.3.小明有3本作業(yè)本,小波有4本作業(yè)本,將這7本作業(yè)本混放在-起,小明從中任取兩本.則他取到的均是自己的作業(yè)本的概率為()A. B. C. D.4.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.85.定義在R上的函數(shù)滿足,為的導(dǎo)函數(shù),已知的圖象如圖所示,若兩個(gè)正數(shù)滿足,的取值范圍是()A. B. C. D.6.計(jì)算等于()A. B. C. D.7.已知雙曲線(a>0,b>0)的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為60°的直線l與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.8.水平放置的,用斜二測(cè)畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.9.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.10.已知集合,,若AB,則實(shí)數(shù)的取值范圍是()A. B. C. D.11.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點(diǎn)都在球上,則球的表面積為()A. B. C. D.12.某校在高一年級(jí)進(jìn)行了數(shù)學(xué)競(jìng)賽(總分100分),下表為高一·一班40名同學(xué)的數(shù)學(xué)競(jìng)賽成績(jī):555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學(xué)生的數(shù)學(xué)競(jìng)賽成績(jī),運(yùn)行相應(yīng)的程序,輸出,的值,則()A.6 B.8 C.10 D.12二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)z1=1﹣2i,z2=a+2i(其中i是虛數(shù)單位,a∈R),若z1?z2是純虛數(shù),則a的值為_____.14.如圖,的外接圓半徑為,為邊上一點(diǎn),且,,則的面積為______.15.若,則的展開式中含的項(xiàng)的系數(shù)為_______.16.設(shè)向量,,且,則_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)棉花的纖維長(zhǎng)度是評(píng)價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評(píng)價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取21根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長(zhǎng)度不低于311的為“長(zhǎng)纖維”,其余為“短纖維”)纖維長(zhǎng)度甲地(根數(shù))34454乙地(根數(shù))112116(1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)1.125的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.甲地乙地總計(jì)長(zhǎng)纖維短纖維總計(jì)附:(1);(2)臨界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現(xiàn)從上述41根纖維中,按纖維長(zhǎng)度是否為“長(zhǎng)纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測(cè),在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.18.(12分)對(duì)于正整數(shù),如果個(gè)整數(shù)滿足,且,則稱數(shù)組為的一個(gè)“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為.(Ⅰ)寫出整數(shù)4的所有“正整數(shù)分拆”;(Ⅱ)對(duì)于給定的整數(shù),設(shè)是的一個(gè)“正整數(shù)分拆”,且,求的最大值;(Ⅲ)對(duì)所有的正整數(shù),證明:;并求出使得等號(hào)成立的的值.(注:對(duì)于的兩個(gè)“正整數(shù)分拆”與,當(dāng)且僅當(dāng)且時(shí),稱這兩個(gè)“正整數(shù)分拆”是相同的.)19.(12分)如圖,在四邊形中,,,.(1)求的長(zhǎng);(2)若的面積為6,求的值.20.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.21.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實(shí)數(shù)的值;(2)若函數(shù)在定義域上有兩個(gè)極值點(diǎn),且.①求實(shí)數(shù)的取值范圍;②求證:.22.(10分)一酒企為擴(kuò)大生產(chǎn)規(guī)模,決定新建一個(gè)底面為長(zhǎng)方形的室內(nèi)發(fā)酵館,發(fā)酵館內(nèi)有一個(gè)無(wú)蓋長(zhǎng)方體發(fā)酵池,其底面為長(zhǎng)方形(如圖所示),其中.結(jié)合現(xiàn)有的生產(chǎn)規(guī)模,設(shè)定修建的發(fā)酵池容積為450米,深2米.若池底和池壁每平方米的造價(jià)分別為200元和150元,發(fā)酵池造價(jià)總費(fèi)用不超過(guò)65400元(1)求發(fā)酵池邊長(zhǎng)的范圍;(2)在建發(fā)酵館時(shí),發(fā)酵池的四周要分別留出兩條寬為4米和米的走道(為常數(shù)).問(wèn):發(fā)酵池的邊長(zhǎng)如何設(shè)計(jì),可使得發(fā)酵館占地面積最小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】

設(shè),由,得,利用復(fù)數(shù)相等建立方程組即可.【題目詳解】設(shè),則,所以,解得,故,復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限.故選:D.【題目點(diǎn)撥】本題考查復(fù)數(shù)的幾何意義,涉及到共軛復(fù)數(shù)的定義、復(fù)數(shù)的模等知識(shí),考查學(xué)生的基本計(jì)算能力,是一道容易題.2、C【解題分析】

根據(jù)題意,知當(dāng)時(shí),,由對(duì)稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【題目詳解】解:由于在區(qū)間有三個(gè)零點(diǎn),,,當(dāng)時(shí),,∴由對(duì)稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【題目點(diǎn)撥】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對(duì)稱性的應(yīng)用,考查計(jì)算能力.3、A【解題分析】

利用計(jì)算即可,其中表示事件A所包含的基本事件個(gè)數(shù),為基本事件總數(shù).【題目詳解】從7本作業(yè)本中任取兩本共有種不同的結(jié)果,其中,小明取到的均是自己的作業(yè)本有種不同結(jié)果,由古典概型的概率計(jì)算公式,小明取到的均是自己的作業(yè)本的概率為.故選:A.【題目點(diǎn)撥】本題考查古典概型的概率計(jì)算問(wèn)題,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.4、B【解題分析】

建立平面直角坐標(biāo)系,將已知條件轉(zhuǎn)化為所設(shè)未知量的關(guān)系式,再將的最小值轉(zhuǎn)化為用該關(guān)系式表達(dá)的算式,利用基本不等式求得最小值.【題目詳解】建立平面直角坐標(biāo)系如下圖所示,設(shè),,且,由于,所以..所以,即..當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí)由得,當(dāng)時(shí),有最小值為,即,,解得.所以當(dāng)且僅當(dāng)時(shí)有最小值為.故選:B【題目點(diǎn)撥】本小題主要考查向量的位置關(guān)系、向量的模,考查基本不等式的運(yùn)用,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.5、C【解題分析】

先從函數(shù)單調(diào)性判斷的取值范圍,再通過(guò)題中所給的是正數(shù)這一條件和常用不等式方法來(lái)確定的取值范圍.【題目詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【題目點(diǎn)撥】本題考查了函數(shù)單調(diào)性和不等式的基礎(chǔ)知識(shí),屬于中檔題.6、A【解題分析】

利用誘導(dǎo)公式、特殊角的三角函數(shù)值,結(jié)合對(duì)數(shù)運(yùn)算,求得所求表達(dá)式的值.【題目詳解】原式.故選:A【題目點(diǎn)撥】本小題主要考查誘導(dǎo)公式,考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.7、A【解題分析】

若過(guò)點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率.根據(jù)這個(gè)結(jié)論可以求出雙曲線離心率的取值范圍.【題目詳解】已知雙曲線的右焦點(diǎn)為,若過(guò)點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率,,離心率,,故選:.【題目點(diǎn)撥】本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件.8、B【解題分析】

根據(jù)斜二測(cè)畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個(gè)相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【題目詳解】根據(jù)“斜二測(cè)畫法”可得,,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個(gè)相同圓錐的組合體,它的表面積為.故選:【題目點(diǎn)撥】本題考查斜二測(cè)畫法的應(yīng)用及組合體的表面積求法,難度較易.9、C【解題分析】程序在運(yùn)行過(guò)程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應(yīng)為k>5?本題選擇C選項(xiàng).點(diǎn)睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時(shí),要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關(guān)系及循環(huán)次數(shù).尤其是統(tǒng)計(jì)數(shù)時(shí),注意要統(tǒng)計(jì)的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.10、D【解題分析】

先化簡(jiǎn),再根據(jù),且AB求解.【題目詳解】因?yàn)?,又因?yàn)?,且AB,所以.故選:D【題目點(diǎn)撥】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.11、B【解題分析】

分別取、的中點(diǎn)、,連接、、,利用二面角的定義轉(zhuǎn)化二面角的平面角為,然后分別過(guò)點(diǎn)作平面的垂線與過(guò)點(diǎn)作平面的垂線交于點(diǎn),在中計(jì)算出,再利用勾股定理計(jì)算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【題目詳解】如下圖所示,分別取、的中點(diǎn)、,連接、、,由于是以為直角等腰直角三角形,為的中點(diǎn),,,且、分別為、的中點(diǎn),所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點(diǎn),同理可知,的外心為點(diǎn),分別過(guò)點(diǎn)作平面的垂線與過(guò)點(diǎn)作平面的垂線交于點(diǎn),則點(diǎn)在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【題目點(diǎn)撥】本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時(shí)考查了計(jì)算能力,屬于中等題.12、D【解題分析】

根據(jù)程序框圖判斷出的意義,由此求得的值,進(jìn)而求得的值.【題目詳解】由題意可得的取值為成績(jī)大于等于90的人數(shù),的取值為成績(jī)大于等于60且小于90的人數(shù),故,,所以.故選:D【題目點(diǎn)撥】本小題考查利用程序框圖計(jì)算統(tǒng)計(jì)量等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,邏輯推理能力和數(shù)學(xué)應(yīng)用意識(shí).二、填空題:本題共4小題,每小題5分,共20分。13、-1【解題分析】

由題意,令即可得解.【題目詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數(shù),∴,解得:a=﹣1.故答案為:﹣1.【題目點(diǎn)撥】本題考查了復(fù)數(shù)的概念和運(yùn)算,屬于基礎(chǔ)題.14、【解題分析】

先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進(jìn)一步得到B=C,最后利用面積公式計(jì)算即可.【題目詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.【題目點(diǎn)撥】本題考查正弦定理解三角形,考查學(xué)生的基本計(jì)算能力,要靈活運(yùn)用正弦定理公式及三角形面積公式,本題屬于中檔題.15、【解題分析】

首先根據(jù)定積分的應(yīng)用求出的值,進(jìn)一步利用二項(xiàng)式的展開式的應(yīng)用求出結(jié)果.【題目詳解】,根據(jù)二項(xiàng)式展開式通項(xiàng):,令,解得,所以含的項(xiàng)的系數(shù).故答案為:【題目點(diǎn)撥】本題考查定積分,二項(xiàng)式的展開式的應(yīng)用,主要考查學(xué)生的運(yùn)算求解能力,屬于基礎(chǔ)題.16、【解題分析】

根據(jù)向量的數(shù)量積的計(jì)算,以及向量的平方,簡(jiǎn)單計(jì)算,可得結(jié)果.【題目詳解】由題可知:且由所以故答案為:【題目點(diǎn)撥】本題考查向量的坐標(biāo)計(jì)算,主要考查計(jì)算,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)在犯錯(cuò)誤概率不超過(guò)的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.(2)見解析【解題分析】試題分析:(1)可以根據(jù)所給表格填出列聯(lián)表,利用列聯(lián)表求出,結(jié)合所給數(shù)據(jù),應(yīng)用獨(dú)立性檢驗(yàn)知識(shí)可作出判斷;(2)寫出的所有可能取值,并求出對(duì)應(yīng)的概率,可列出分布列并進(jìn)一步求出的數(shù)學(xué)期望.試題解析:(Ⅰ)根據(jù)已知數(shù)據(jù)得到如下列聯(lián)表:甲地乙地總計(jì)長(zhǎng)纖維91625短纖維11415總計(jì)212141根據(jù)列聯(lián)表中的數(shù)據(jù),可得所以,在犯錯(cuò)誤概率不超過(guò)的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.(Ⅱ)由表可知在8根中乙地“短纖維”的根數(shù)為,的可能取值為:1,1,2,3,,,,.∴的分布列為:1123∴.18、(Ⅰ),,,,;(Ⅱ)為偶數(shù)時(shí),,為奇數(shù)時(shí),;(Ⅲ)證明見解析,,【解題分析】

(Ⅰ)根據(jù)題意直接寫出答案.(Ⅱ)討論當(dāng)為偶數(shù)時(shí),最大為,當(dāng)為奇數(shù)時(shí),最大為,得到答案.(Ⅲ)討論當(dāng)為奇數(shù)時(shí),,至少存在一個(gè)全為1的拆分,故,當(dāng)為偶數(shù)時(shí),根據(jù)對(duì)應(yīng)關(guān)系得到,再計(jì)算,,得到答案.【題目詳解】(Ⅰ)整數(shù)4的所有“正整數(shù)分拆”為:,,,,.(Ⅱ)當(dāng)為偶數(shù)時(shí),時(shí),最大為;當(dāng)為奇數(shù)時(shí),時(shí),最大為;綜上所述:為偶數(shù),最大為,為奇數(shù)時(shí),最大為.(Ⅲ)當(dāng)為奇數(shù)時(shí),,至少存在一個(gè)全為1的拆分,故;當(dāng)為偶數(shù)時(shí),設(shè)是每個(gè)數(shù)均為偶數(shù)的“正整數(shù)分拆”,則它至少對(duì)應(yīng)了和的均為奇數(shù)的“正整數(shù)分拆”,故.綜上所述:.當(dāng)時(shí),偶數(shù)“正整數(shù)分拆”為,奇數(shù)“正整數(shù)分拆”為,;當(dāng)時(shí),偶數(shù)“正整數(shù)分拆”為,,奇數(shù)“正整數(shù)分拆”為,故;當(dāng)時(shí),對(duì)于偶數(shù)“正整數(shù)分拆”,除了各項(xiàng)不全為的奇數(shù)拆分外,至少多出一項(xiàng)各項(xiàng)均為的“正整數(shù)分拆”,故.綜上所述:使成立的為:或.【題目點(diǎn)撥】本土考查了數(shù)列的新定義問(wèn)題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.19、(1)(2)【解題分析】

(1)利用余弦定理可得的長(zhǎng);(2)利用面積得出,結(jié)合正弦定理可得.【題目詳解】解:(1)由題可知.在中,,所以.(2),則.又,所以.【題目點(diǎn)撥】本題主要考查利用正弦定理和余弦定理解三角形,已知角較多時(shí)一般選用正弦定理,已知邊較多時(shí)一般選用余弦定理.20、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解題分析】

運(yùn)用數(shù)學(xué)歸納法證明即可得到結(jié)果化簡(jiǎn),運(yùn)用累加法得出結(jié)果運(yùn)用放縮法和累加法進(jìn)行求證【題目詳解】(Ⅰ)數(shù)學(xué)歸納法證明時(shí),①當(dāng)時(shí),成立;②當(dāng)時(shí),假設(shè)成立,則時(shí)所以時(shí),成立綜上①②可知,時(shí),(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故【題目點(diǎn)撥】本題考查了數(shù)列的綜合,運(yùn)用數(shù)學(xué)歸納法證明不等式的成立,結(jié)合已知條件進(jìn)行化簡(jiǎn)求出化簡(jiǎn)后的結(jié)果,利用放縮法求出不等式,然后兩邊同時(shí)取對(duì)數(shù)再進(jìn)行證明,本題較為困難。21、(1);(2)①;②詳見解析.【解題分析】

(1)由函數(shù)在處的切線與直線垂直,即可得,對(duì)其求導(dǎo)并表示,代入上述方程即可解得答案;(2)①已知要求等價(jià)于在上有兩個(gè)根,且,即在上有兩個(gè)不相等的根,由二次函數(shù)的圖象與性質(zhì)構(gòu)建不等式組,解得答案,最后分析此時(shí)單調(diào)性推及極值說(shuō)明即可;②由①可知,是方程的兩個(gè)不等的實(shí)根,由韋達(dá)定理可表達(dá)根與系數(shù)的關(guān)系,進(jìn)而用含的式子表示,令,對(duì)求導(dǎo)分析單調(diào)性,即可知道存在常數(shù)使在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而求最值證明不等式成立.【題目詳解】解:(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論