![四川省達(dá)州市重點(diǎn)中學(xué)2024屆高三下學(xué)期第一次聯(lián)數(shù)學(xué)試題_第1頁(yè)](http://file4.renrendoc.com/view10/M02/21/2C/wKhkGWWPUimAVuhhAAIv7XZCIEA547.jpg)
![四川省達(dá)州市重點(diǎn)中學(xué)2024屆高三下學(xué)期第一次聯(lián)數(shù)學(xué)試題_第2頁(yè)](http://file4.renrendoc.com/view10/M02/21/2C/wKhkGWWPUimAVuhhAAIv7XZCIEA5472.jpg)
![四川省達(dá)州市重點(diǎn)中學(xué)2024屆高三下學(xué)期第一次聯(lián)數(shù)學(xué)試題_第3頁(yè)](http://file4.renrendoc.com/view10/M02/21/2C/wKhkGWWPUimAVuhhAAIv7XZCIEA5473.jpg)
![四川省達(dá)州市重點(diǎn)中學(xué)2024屆高三下學(xué)期第一次聯(lián)數(shù)學(xué)試題_第4頁(yè)](http://file4.renrendoc.com/view10/M02/21/2C/wKhkGWWPUimAVuhhAAIv7XZCIEA5474.jpg)
![四川省達(dá)州市重點(diǎn)中學(xué)2024屆高三下學(xué)期第一次聯(lián)數(shù)學(xué)試題_第5頁(yè)](http://file4.renrendoc.com/view10/M02/21/2C/wKhkGWWPUimAVuhhAAIv7XZCIEA5475.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省達(dá)州市重點(diǎn)中學(xué)2024屆高三下學(xué)期第一次聯(lián)數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)i為虛數(shù)單位,若復(fù)數(shù),則復(fù)數(shù)z等于()A. B. C. D.02.已知雙曲線的左、右焦點(diǎn)分別為,,P是雙曲線E上的一點(diǎn),且.若直線與雙曲線E的漸近線交于點(diǎn)M,且M為的中點(diǎn),則雙曲線E的漸近線方程為()A. B. C. D.3.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c4.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長(zhǎng)為1),則這個(gè)幾何體的體積是()A. B. C.16 D.325.如圖,在三棱錐中,平面,,現(xiàn)從該三棱錐的個(gè)表面中任選個(gè),則選取的個(gè)表面互相垂直的概率為()A. B. C. D.6.如圖是計(jì)算值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.7.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.9.已知雙曲線:(,)的右焦點(diǎn)與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長(zhǎng)為,則雙曲線的離心率為()A.2 B. C. D.310.已知的部分圖象如圖所示,則的表達(dá)式是()A. B.C. D.11.天干地支,簡(jiǎn)稱為干支,源自中國(guó)遠(yuǎn)古時(shí)代對(duì)天象的觀測(cè).“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀(jì)年法是天干和地支依次按固定的順序相互配合組成,以此往復(fù),60年為一個(gè)輪回.現(xiàn)從農(nóng)歷2000年至2019年共20個(gè)年份中任取2個(gè)年份,則這2個(gè)年份的天干或地支相同的概率為()A. B. C. D.12.一個(gè)圓錐的底面和一個(gè)半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個(gè)圓錐軸截面底角的大小是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知二項(xiàng)式ax-1x6的展開(kāi)式中的常數(shù)項(xiàng)為-16014.在中,角所對(duì)的邊分別為,,的平分線交于點(diǎn)D,且,則的最小值為_(kāi)_______.15.如圖,在矩形中,,是的中點(diǎn),將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為_(kāi)_________.16.記為等比數(shù)列的前n項(xiàng)和,已知,,則_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓:(),與軸負(fù)半軸交于,離心率.(1)求橢圓的方程;(2)設(shè)直線:與橢圓交于,兩點(diǎn),連接,并延長(zhǎng)交直線于,兩點(diǎn),已知,求證:直線恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).18.(12分)在中,角所對(duì)的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.19.(12分)在中,角,,所對(duì)的邊分別是,,,且.(1)求的值;(2)若,求的取值范圍.20.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.(Ⅰ)求的極坐標(biāo)方程和曲線的參數(shù)方程;(Ⅱ)求曲線的內(nèi)接矩形的周長(zhǎng)的最大值.21.(12分)已知在平面直角坐標(biāo)系中,橢圓的焦點(diǎn)為為橢圓上任意一點(diǎn),且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若直線交橢圓于兩點(diǎn),且滿足(分別為直線的斜率),求的面積為時(shí)直線的方程.22.(10分)已知函數(shù),其導(dǎo)函數(shù)為,(1)若,求不等式的解集;(2)證明:對(duì)任意的,恒有.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
根據(jù)復(fù)數(shù)除法的運(yùn)算法則,即可求解.【題目詳解】.故選:B.【題目點(diǎn)撥】本題考查復(fù)數(shù)的代數(shù)運(yùn)算,屬于基礎(chǔ)題.2、C【解題分析】
由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【題目詳解】根據(jù)題意,點(diǎn)P一定在左支上.由及,得,,再結(jié)合M為的中點(diǎn),得,又因?yàn)镺M是的中位線,又,且,從而直線與雙曲線的左支只有一個(gè)交點(diǎn).在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【題目點(diǎn)撥】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點(diǎn)三角形等知識(shí),是一道中檔題.3、A【解題分析】
利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性直接求解.【題目詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【題目點(diǎn)撥】本題考查三個(gè)數(shù)的大小的判斷,考查指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.4、A【解題分析】幾何體為一個(gè)三棱錐,高為4,底面為一個(gè)等腰直角三角形,直角邊長(zhǎng)為4,所以體積是,選A.5、A【解題分析】
根據(jù)線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對(duì)數(shù),再求出四個(gè)面中任選2個(gè)的方法數(shù),從而可計(jì)算概率.【題目詳解】由已知平面,,可得,從該三棱錐的個(gè)面中任選個(gè)面共有種不同的選法,而選取的個(gè)表面互相垂直的有種情況,故所求事件的概率為.故選:A.【題目點(diǎn)撥】本題考查古典概型概率,解題關(guān)鍵是求出基本事件的個(gè)數(shù).6、B【解題分析】
根據(jù)計(jì)算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進(jìn)而可得判斷框內(nèi)的不等式.【題目詳解】因?yàn)樵摮绦驁D是計(jì)算值的一個(gè)程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【題目點(diǎn)撥】本題考查了程序框圖的簡(jiǎn)單應(yīng)用,根據(jù)結(jié)果填寫(xiě)判斷框,屬于基礎(chǔ)題.7、B【解題分析】
利用充分必要條件的定義可判斷兩個(gè)條件之間的關(guān)系.【題目詳解】若,則,故或,當(dāng)時(shí),直線,直線,此時(shí)兩條直線平行;當(dāng)時(shí),直線,直線,此時(shí)兩條直線平行.所以當(dāng)時(shí),推不出,故“”是“”的不充分條件,當(dāng)時(shí),可以推出,故“”是“”的必要條件,故選:B.【題目點(diǎn)撥】本題考查兩條直線的位置關(guān)系以及必要不充分條件的判斷,前者應(yīng)根據(jù)系數(shù)關(guān)系來(lái)考慮,后者依據(jù)兩個(gè)條件之間的推出關(guān)系,本題屬于中檔題.8、D【解題分析】
直接利用復(fù)數(shù)的模的求法的運(yùn)算法則求解即可.【題目詳解】(是虛數(shù)單位)可得解得本題正確選項(xiàng):【題目點(diǎn)撥】本題考查復(fù)數(shù)的模的運(yùn)算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計(jì)算能力.9、A【解題分析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【題目詳解】由已知,,漸近線方程為,因?yàn)閳A被雙曲線的一條漸近線截得的弦長(zhǎng)為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【題目點(diǎn)撥】本題考查雙曲線離心率的問(wèn)題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.10、D【解題分析】
由圖象求出以及函數(shù)的最小正周期的值,利用周期公式可求得的值,然后將點(diǎn)的坐標(biāo)代入函數(shù)的解析式,結(jié)合的取值范圍求出的值,由此可得出函數(shù)的解析式.【題目詳解】由圖象可得,函數(shù)的最小正周期為,.將點(diǎn)代入函數(shù)的解析式得,得,,,則,,因此,.故選:D.【題目點(diǎn)撥】本題考查利用圖象求三角函數(shù)解析式,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.11、B【解題分析】
利用古典概型概率計(jì)算方法分析出符合題意的基本事件個(gè)數(shù),結(jié)合組合數(shù)的計(jì)算即可出求得概率.【題目詳解】20個(gè)年份中天干相同的有10組(每組2個(gè)),地支相同的年份有8組(每組2個(gè)),從這20個(gè)年份中任取2個(gè)年份,則這2個(gè)年份的天干或地支相同的概率.故選:B.【題目點(diǎn)撥】本小題主要考查古典概型的計(jì)算,考查組合數(shù)的計(jì)算,考查學(xué)生分析問(wèn)題的能力,難度較易.12、D【解題分析】
設(shè)圓錐的母線長(zhǎng)為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【題目詳解】設(shè)圓錐的母線長(zhǎng)為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【題目點(diǎn)撥】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解題分析】
在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng),再根據(jù)常數(shù)項(xiàng)等于-160求得實(shí)數(shù)a的值.【題目詳解】∵二項(xiàng)式(ax-1x)令6-2r=0,求得r=3,可得常數(shù)項(xiàng)為-C63故答案為:2.【題目點(diǎn)撥】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.14、9【解題分析】分析:先根據(jù)三角形面積公式得條件、再利用基本不等式求最值.詳解:由題意可知,,由角平分線性質(zhì)和三角形面積公式得,化簡(jiǎn)得,因此當(dāng)且僅當(dāng)時(shí)取等號(hào),則的最小值為.點(diǎn)睛:在利用基本不等式求最值時(shí),要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號(hào)取得的條件)的條件才能應(yīng)用,否則會(huì)出現(xiàn)錯(cuò)誤.15、【解題分析】
根據(jù)題意,畫(huà)出空間幾何體,設(shè)的中點(diǎn)分別為,并連接,利用面面垂直的性質(zhì)及所給線段關(guān)系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【題目詳解】由題可得,,均為等腰直角三角形,如圖所示,設(shè)的中點(diǎn)分別為,連接,則,.因?yàn)槠矫嫫矫?,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【題目點(diǎn)撥】本題考查了空間幾何體的綜合應(yīng)用,折疊后空間幾何體的線面位置關(guān)系應(yīng)用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.16、【解題分析】
設(shè)等比數(shù)列的公比為,將已知條件等式轉(zhuǎn)化為關(guān)系式,求解即可.【題目詳解】設(shè)等比數(shù)列的公比為,,.故答案為:.【題目點(diǎn)撥】本題考查等比數(shù)列通項(xiàng)的基本量運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析;定點(diǎn)坐標(biāo)為【解題分析】
(1)由條件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【題目詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)由得,.又∴,同理又∴∴∴∴∴∴,此時(shí)滿足∴∴直線恒過(guò)定點(diǎn)【題目點(diǎn)撥】涉及橢圓的弦長(zhǎng)、中點(diǎn)、距離等相關(guān)問(wèn)題時(shí),一般利用根與系數(shù)的關(guān)系采用“設(shè)而不求”“整體帶入”等解法.18、(1);(2).【解題分析】
(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函數(shù)值域的方法即可得到答案.【題目詳解】(1)因?yàn)?,所?在中,由正弦定理得,所以,即.在中,由余弦定理得,又因?yàn)?,所?(2)由(1)得,在中,,所以.因?yàn)椋裕援?dāng),即時(shí),有最大值1,所以的最大值為.【題目點(diǎn)撥】本題考查正余弦定理解三角形,涉及到兩角差的正弦公式、輔助角公式、向量數(shù)量積的坐標(biāo)運(yùn)算,是一道容易題.19、(1);(2)【解題分析】
(1)利用正弦定理邊化角,結(jié)合兩角和差正弦公式可整理求得,進(jìn)而求得和,代入求得結(jié)果;(2)利用正弦定理可將表示為,利用兩角和差正弦公式、輔助角公式將其整理為,根據(jù)正弦型函數(shù)值域的求解方法,結(jié)合的范圍可求得結(jié)果.【題目詳解】(1)由正弦定理可得:即(2)由(1)知:,,即的取值范圍為【題目點(diǎn)撥】本題考查解三角形知識(shí)的相關(guān)應(yīng)用,涉及到正弦定理邊化角的應(yīng)用、兩角和差正弦公式和輔助角公式的應(yīng)用、與三角函數(shù)值域有關(guān)的取值范圍的求解問(wèn)題;求解取值范圍的關(guān)鍵是能夠利用正弦定理將邊長(zhǎng)的問(wèn)題轉(zhuǎn)化為三角函數(shù)的問(wèn)題,進(jìn)而利用正弦型函數(shù)值域的求解方法求得結(jié)果.20、(Ⅰ)曲線的參數(shù)方程為:(為參數(shù));的極坐標(biāo)方程為;(Ⅱ)16.【解題分析】
(
I
)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;(
II
)利用三角函數(shù)關(guān)系式的恒等變換和正弦型函數(shù)的性質(zhì)的應(yīng)用,即可求出結(jié)果.【題目詳解】(Ⅰ)由題意:曲線的直角坐標(biāo)方程為:,所以曲線的參數(shù)方程為(為參數(shù)),因?yàn)橹本€的直角坐標(biāo)方程為:,又因曲線的左焦點(diǎn)為,將其代入中,得到,所以的極坐標(biāo)方程為.(Ⅱ)設(shè)橢圓的內(nèi)接矩形的頂點(diǎn)為,,,,所以橢圓的內(nèi)接矩形的周長(zhǎng)為:,所以當(dāng)時(shí),即時(shí),橢圓的內(nèi)接矩形的周長(zhǎng)取得最大值16.【題目點(diǎn)撥】本題考查了曲線的參數(shù)方程,極坐標(biāo)方程與普通方程間的互化,三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,極徑的應(yīng)用,考查學(xué)生的求解運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.21、(1)(2)或【解題分析】
(1)根據(jù)橢圓定義求得,得橢圓方程;(2)設(shè),由得,應(yīng)用韋達(dá)定理得,代入已知條件可得,再由橢圓中弦長(zhǎng)公式求得弦長(zhǎng),原點(diǎn)到直線的距離,得三角形面積,從而可求得,得直線方程.【題目詳解】解:(1)據(jù)題意設(shè)橢圓的方程為則橢圓的標(biāo)準(zhǔn)方程為.(2)據(jù)得設(shè),則又原點(diǎn)到直線的距離解得或所求直線的方程為或【題目點(diǎn)撥】本題考查求橢圓標(biāo)準(zhǔn)方程,考查直線與橢圓相交問(wèn)題.解題時(shí)采取設(shè)而不求思想,即設(shè)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 28海的女兒說(shuō)課稿-2023-2024學(xué)年四年級(jí)下冊(cè)語(yǔ)文統(tǒng)編版
- 2 我是什么(說(shuō)課稿)-2024-2025學(xué)年統(tǒng)編版語(yǔ)文二年級(jí)上冊(cè)
- 2024-2025學(xué)年高中生物 專(zhuān)題2 微生物的培養(yǎng)與應(yīng)用 課題2 土壤中分解尿素的細(xì)菌的分離與計(jì)數(shù)說(shuō)課稿3 新人教版選修1
- 2025國(guó)有土地使用權(quán)出讓協(xié)議合同
- 2025有限公司股權(quán)轉(zhuǎn)讓合同
- Module 1 Unit 2 Changes in our lives Listen and say Listen and enjoy (說(shuō)課稿)-2024-2025學(xué)年滬教牛津版(深圳用)英語(yǔ)六年級(jí)下冊(cè)
- 2025城市供用氣合同
- 濰坊耐火混凝土施工方案
- 加氣轎車(chē)出售合同范例
- 8《安全記心上》(第一課時(shí))說(shuō)課稿-2024-2025學(xué)年道德與法治三年級(jí)上冊(cè)統(tǒng)編版
- 腰椎間盤(pán)突出癥課件(共100張課件)
- DB50T 662-2015 公交首末站規(guī)劃設(shè)計(jì)規(guī)范
- 《工程力學(xué)》課程教學(xué)大綱
- 2024至2030年中國(guó)女裝行業(yè)市場(chǎng)發(fā)展監(jiān)測(cè)及投資前景展望報(bào)告
- 海洋工程裝備制造經(jīng)濟(jì)效益和社會(huì)效益分析報(bào)告
- 7.1.2 直觀圖的畫(huà)法-【中職專(zhuān)用】高一數(shù)學(xué)教材配套課件(高教版2021·基礎(chǔ)模塊下冊(cè))
- 皮膚癬菌病的分子診斷工具
- SL+575-2012水利水電工程水土保持技術(shù)規(guī)范
- 《煉油與化工企業(yè)設(shè)備完整性管理 體系要求》
- SYT 6968-2021 油氣輸送管道工程水平定向鉆穿越設(shè)計(jì)規(guī)范-PDF解密
- 醫(yī)院優(yōu)質(zhì)服務(wù)提升方案及措施
評(píng)論
0/150
提交評(píng)論