版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
中英文對照外文翻譯文獻(文檔含英文原文和中文翻譯)外文:Memory-BasedOn-LineTuningofPIDControllersforNonlinearSystemsAbstract—Sincemostprocesseshavenonlinearities,controllerdesignschemestodealwithsuchsystemsarerequired.Ontheotherhand,PIDcontrollershavebeenwidelyusedforprocesssystems.Therefore,inthispaper,anewdesignschemeofPIDcontrollersbasedonamemory-based(MB)modelingisproposedfornonlinearsystems.AccordingtotheMBmodelingmethod,somelocalmodelsareautomaticallygeneratedbasedoninput/outputdatapairsofthecontrolledobjectstoredinthedata-base.TheproposedschemegeneratesPIDparametersusingstoredinput/outputdatainthedata-base.ThisschemecanadjustthePIDparametersinanon-linemannerevenifthesystemhasnonlinearproperties.Finally,theeffectivenessofthenewlyproposedcontrolschemeisnumericallyevaluatedonasimulationexample.I.INTRODUCTIONInrecentyears,manycomplicatedcontrolalgorithmssuchasadaptivecontroltheoryorrobustcontroltheoryhavebeenproposedandimplemented.However,inindustrialprocesses,PIDcontrollers[1],[2],[3]havebeenwidelyemployedforabout80%ormoreofcontrolloops.Thereasonsaresummarizedasfollows.(1)thecontrolstructureisquitsimple;(2)thephysicalmeaningofcontrolparametersisclear;and(3)theoperators’know-howcanbeeasilyutilizedindesigningcontrollers.Therefore,itisstillattractivetodesignPIDcontrollers.However,sincemostprocesssystemshavenonlinearities,itisdifficulttoobtaingoodcontrolperformancesforsuchsystemssimplyusingthefixedPIDparameters.Therefore,PIDparameterstuningmethodsusingneuralnetworks(NN)[4]andgeneticalgorithms(GA)[5]havebeenproposeduntilnow.Accordingtothesemethods,thelearningcostisconsiderablylarge,andthesePIDparameterscannotbeadequatelyadjustedduetothenonlinearproperties.Therefore,itisquitedifficulttoobtaingoodcontrolperformancesusingtheseconventionalschemes.Bytheway,developmentofcomputersenablesustomemorize,fastretrieveandreadoutalargenumberofdata.Bytheseadvantages,thefollowingmethodhasbeenproposed:Whenevernewdataisobtained,thedataisstored.Next,similarneighborstotheinformationrequests,called’queries’,areselectedfromthestoreddata.Furthermore,thelocalmodelisconstructedusingtheseneighbors.Thismemory-based(MB)modelingmethod,iscalledJust-In-Time(JIT)method[6],[7],LazyLearningmethod[8]orModel-on-Demand(MoD)[9],andtheseschemehavelotsofattentioninlastdecade.Inthispaper,adesignschemeofPIDcontrollersbasedontheMBmodelingmethodisdiscussed.AfewPIDcontrollershavebeenalreadyproposedbasedontheJITmethod[10]andtheMoDmethod[11]whichbelongtotheMBmodelingmethods.Accordingtotheformermethod,theJITmethodisusedasthepurposeofsupplementingthefeedbackcontrollerwithaPIDstructure.However,thetrackingpropertyisnotguaranteedenoughduetothenonlinearitiesinthecasewherereferencesignalsarechanged,becausethecontrollerdoesnotincludesanyintegralactioninthewholecontrolsystem.Ontheotherhand,thelattermethodhasaPIDcontrolstructure.PIDparametersaretunedbyoperators’skills,andtheyarestoredinthedata-baseinadvance.Andalso,asuitablesetofPIDparametersisgeneratedusingthestoreddata.However,thegoodcontrolperformancecannotbenecessarilyobtainedinthecasewherenonlinearitiesareincludedinthecontrolledobjectand/orsystemparametersarechanged,becausePIDparametersarenottunedinanon-linemannercorrespondingtocharacteristicsofthecontrolledobject.Therefore,inthispaper,adesignschemeofPIDcontrollersbasedontheMBmodelingmethodisnewlyproposed.Accordingtotheproposedmethod,PIDparameterswhichareobtainedusingtheMBmodelingmethodareadequatelytunedinproportiontocontrolerrors,andmodifiedPIDparametersarestoredinthedata-base.Therefore,moresuitablePIDparameterscorrespondingtocharacteristicsofthecontrolledobjectarenewlystored.Moreover,analgorithmtoavoidtheexcessiveincreaseofthestoreddata,isfurtherdiscussed.Thisalgorithmyieldsthereductionofmemoriesandcomputationalcosts.Finally,theeffectivenessofthenewlyproposedcontrolschemeisexaminedonasimulationexample.II.PIDCONTROLLERDESIGNBASEDONMEMORY-BASEDMODELINGMETHODA.MBmodelingmethodFirst,thefollowingdiscrete-timenonlinearsystemisconsidered:,(1)wherey(t)denotesthesystemoutputandf(·)denotesthenonlinearfunction.Moreover,_(t?1)iscalled’informationvector’,whichisdefiedbythefollowingequation:,(2)whereu(t)denotesthesysteminput.Also,nyandnurespectivelydenotetheordersofthesystemoutputandthesysteminput,respectively.AccordingtotheMBmodelingmethod,thedataisstoredintheformoftheinformationvector_expressedinEq.(2).Moreover,_(t)isrequiredincalculatingtheestimateoftheoutputy(t+1)called’query’.Thatis,aftersomesimilarneighborstothequeryareselectedfromthedata-base,thepredictivevalueofthesystemcanbeobtainedusingtheseneighbors.B.ControllerdesignbasedonMBmodelingmethodInthispaper,thefollowingcontrollawwithaPIDstructureisconsidered:(3)(4)wheree(t)denotesthecontrolerrorsignaldefinedbye(t):=r(t)?y(t).(5)r(t)denotesthereferencesignal.Also,kc,TIandTDrespectivelydenotetheproportionalgain,theresettimeandthederivativetime,andTsdenotesthesamplinginterval.Here,KP,KIandKDincludedinEq.(4)arederivedbytherelations=,=/和=/。denotesthedifferencingoperatordefinedby..Here,itisquitedifficulttoobtainagoodcontrolperformanceduetononlinearities,ifPIDparameters(KP,KI,KD)inEq.(4)arefixed.Therefore,anewcontrolschemeisproposed,whichcanadjustPIDparametersinanon-linemannercorrespondingtocharacteristicsofthesystem.Thus,insteadofEq.(4),thefollowingPIDcontrollawwithvariablePIDparametersisemployed:(6)Now,Eq.(6)canberewrittenasthefollowingrelations:(7)(8)(9)whereg(·)denotesalinearfunction.BysubstitutingEq.(7)andEq.(8)intoEq.(1)andEq.(2),thefollowingequationcanbederived:(10)(11)whereny_3,nu_2,andh(·)denotesanonlinearfunction.Therefore,K(t)isgivenbythefollowingequations:(12)(13)whereF(·)denotesanonlinearfunction.Sincethefutureoutputy(t+1)includedinEq.(13)cannotbeobtainedatt,y(t+1)isreplacedbyr(t+1).Becausethecontrolsystemsothatcanrealizey(t+1)!r(t+1),isdesignedinthispaper.Therefore,ˉ_(t)includedinEq.(13)isnewlyrewrittenasfollows:(14)Aftertheabovepreparation,anewPIDcontrolschemeisdesignedbasedontheMBmodelingmethod.Thecontrollerdesignalgorithmissummarizedasfollows.[STEP1]Generateinitialdata-baseTheMBmodelingmethodcannotworkifthepastdataisnotsavedatall.Therefore,PIDparametersarefirstlycalculatedusingZieglar&Nicholsmethod[2]orChien,Hrones&Reswick(CHR)method[3]basedonhistoricaldataofthecontrolledobjectinordertogeneratetheinitialdatabase.Thatis,_(j)indicatedinthefollowingequationisgeneratedastheinitialdata-base:(15)whereandaregivenbyEq.(14)andEq.(9).Moreover,N(0)denotesthenumberofinformationvectorsstoredintheinitialdata-base.NotethatallPIDparametersincludedintheinitialinformationvectorsareequal,thatis,K(1)=K(2)=···=K(N(0))intheinitialstage.[STEP2]CalculatedistanceandselectneighborsDistancesbetweenthequeryandtheinformationvectorsarecalculatedusingthefollowingL1-normwithsomeweights:(16)whereN(t)denotesthenumberofinformationvectorsstoredinthedata-basewhenthequeryisgiven.Furthermore,denotesthel-thelementofthej-thinformationvector.Similarly,denotesthel-thelementofthequeryatt.Moreover,denotesthemaximumelementamongthel-thelementofallinformationvectorsstoredinthedata-base.Similarly,denotestheminimumelement.Here,kpieceswiththesmallestdistancesarechosenfromallinformationvectors.[STEP3]ConstructlocalmodelNext,usingkneighborsselectedinSTEP2,thelocalmodelisconstructedbasedonthefollowingLinearlyWeightedAverage(LWA)[12]: (17)wherewidenotestheweightcorrespondingtothei-thinformationvectorintheselectedneighbors,andiscalculatedby:(18)[STEP4]DataadjustmentInthecasewhereinformationcorrespondingtothecurrentstateofthecontrolledobjectisnoteffectivelysavedinthedata-base,asuitablesetofPIDparameterscannotbeeffectivelycalculated.Thatis,itisnecessarytoadjustPIDparameterssothatthecontrolerrordecreases.Therefore,PIDparametersobtainedinSTEP3areupdatedcorrespondingtothecontrolerror,andthesenewPIDparametersarestoredinthedata-base.ThefollowingsteepestdescentmethodisutilizedinordertomodifyPIDparameters: (19)(20)where_denotesthelearningrate,and饎hefollowingJ(t+1)denotestheerrorcriterion:(21)(22)yr(t)denotestheoutputofthereferencemodelwhichisgivenby:(23)(24)Here,T(z?1)isdesignedbasedonthereferenceliterature[13].Moreover,eachpartialdifferentialofEq.(19)isdevelopedasfollows:.(25)NotethataprioriinformationwithrespecttothesystemJacobianisrequiredinordertocalculateEq.(25).Here,usingtherelationx=|x|sign(x),thesystemJacobiancanbeobtainedbythefollowingequation:(26)wheresign(x)=1(x>0),?1(x<0).Now,ifthesignofthesystemJacobianisknowninadvance,byincludingin,theusageofthesystemJacobiancanmakeeasy[14].Therefore,itisassumedthatthesignofthesystemJacobianisknowninthispaper.[STEP5]RemoveredundantdataInimplementingtorealsystems,thenewlyproposedschemehasaconstraintthatthecalculationfromSTEP2toSTEP4mustbefinishedwithinthesamplingtime.Here,storingtheredundantdatainthedata-baseneedsexcessivecomputationaltime.Therefore,analgorithmtoavoidtheexcessiveincreaseofthestoreddata,isfurtherdiscussed.Theprocedureiscarriedoutinthefollowingtwosteps.First,theinformationvectorswhichsatisfythefollowingfirstcondition,areextractedfromthedata-base:[Firstcondition](27)whereisdefinedby(28)Moreover,theinformationvectorswhichsatisfythefollowingsecondcondition,arefurtherchosenfromtheextracted:(29)whereisdefinedby(30)Ifthereexistplural,theinformationvectorwiththesmallestvalueinthesecondconditionamongall,isonlyremoved.Bytheaboveprocedure,theredundantdatacanberemovedfromthedata-base.Here,ablockdiagramsummarizedmentionedabovealgorithmsareshowninFig.rr_+ModelPIDTunerTunerTunerPID整定DatabaseModelMemory-BasedPIDControllerCControllerControllerSystemControllerSystemIII.SIMULATIONEXAMPLEInordertoevaluatetheeffectivenessofthenewlyproposedscheme,asimulationexampleforanonlinearsystemisconsidered.Asthenonlinearsystem,thefollowingHammersteinmodel[15]isdiscussed:[System1](31)[System2](32)wheredenotesthewhiteGaussiannoisewithzeromeanandvariance.StaticpropertiesofSystem1andSystem2areshowninFig.2.Fig.2FromFig.2,itisclearthatgainsofSystem2arelargerthanonesofSystem1at.Here,thereferencesignalr(t)isgivenby:(33)Theinformationvectorˉ_isdefinedasfollows:(34)Thedesiredcharacteristicpolynomialincludedinthereferencemodelwasdesignedasfollows:(35)whereT(z?1)wasdesignedbasedonthereferenceliterature[13].Furthermore,theuser-specifiedparametersincludedintheproposedmethodaredeterminedasshowninTableI.TABLEIUSER-SPECIFIEDPARAMETERSINCLUDEDINTHEPROPOSEDMETHOD(HAMMERSTEINMODEL).OrdersoftheinformationvectorNumberofneighborsLearningrateCoefficientstoinhibitthedataInitialnumberofdataForthepurposeofcomparison,thefixedPIDcontrolschemewhichhaswidelyusedinindustrialprocesseswasfirstemployed,whosePIDparametersweretunedbyCHRmethod[3].Then,PIDparameterswerecalculatedas(36)Moreover,thePIDcontrollerusingtheNN,calledNN-PIDcontroller,wasappliedforthepurposeofthecomparison,wheretheNNwasutilizedinordertosupplementthefixedPIDcontroller.ThecontrolresultsforSystem1aresummarizedinFig.3,wherethesolidlineanddashedlinedenotethecontrolresultsoftheproposedmethodandthefixedPIDcontroller,respectively.Furthermore,trajectoriesofPIDparametersusingtheproposedmethodareshowninFig.4.FromFig.3,owingtononlinearitiesofthecontrolledobject,thecontrolresultbythefixedPIDcontrollerisnotgood.Ontheotherhand,fromFig.3andFig.4,thegoodcontrolresultcanbeobtainedusingtheproposedmethod,becausePIDparametersareadequatelyadjusted.Moreover,thenumberofdatastoredinthedatabasewas49.Usingthealgorithmtoremoveneedlessdata,thenumberofdatastoredinthedata-basecanbeeffectively(37)whereNdenotesthenumberofstepsper1[epoc].Furthermore,thenumberofiterationwassetas1,becausePIDparameterscanbeadjustedinanon-linemannerbytheproposedmethod.Moreover,theNN-PIDcontrollerwasappliedtoSystem1.Errorbehaviorsof_expressedinEq.(37)areshowninFig.5,andcontrolresultsareshowninFig.6.Fig.5Fig.6FromFig.5,thenecessarynumberforlearningiterationswas86[epoc]untilthecontrolresultusingtheNN-PIDcontrollercouldbeobtainedthesamecontrolperformancesastheproposedmethod,thatis,untilwassatisfied.Therefore,theeffectivenessoftheproposedmethodisalsoverifiedincomparisonwiththeNN-PIDcontrollerfornonlinearsystems.Next,thecasewherethesystemhastime-variantparametersisconsidered.Thatis,thesystemchangesfromEq.(31)Fig.5.ErrorbehaviorsusingthecontrollerfusedthefixedPIDwiththeNN-PIDforHammersteinmodel.Fig.6.ControlresultusingthecontrollerfusedthefixedPIDwiththeNN-PIDforHammersteinmodel.toEq.(32)att=70.First,thecontrolresultwiththefixedPIDcontroller,isshowninFig.7,wherePIDparametersaresetasthesameparametersasshowninEq.(36).Sincethegainofthecontrolledobjectbecomeshighgainaroundr(t)=2.0,thefixedPIDcontrollerdoesnotworkwell.Ontheotherhand,theproposedcontrolschemewasemployedinthiscase.ThecontrolresultandtrajectoriesofPIDparametersareshowninFig.8andFig.9.Fig.8Fromthesefigures,agoodcontrolperformancecanbealsoobtainedbecausePIDparametersareadequatelyadjustedusingtheproposedmethod.Theusefulnessforthenonlinearsystemwithtime-variantparametersissuggestedinthisexample.IV.CONCLUSIONSInthispaper,anewdesignschemeofPIDcontrollersusingtheMBmodelingmethodhasbeenproposed.ManyPIDcontrollerdesignschemesusingNNsandGAshavebeenproposedfornonlinearsystemsuptonow.Inemployingtheseschemeforrealsystems,however,itisaseriousproblemthatthelearningcostbecomesconsiderablylarge.Ontheotherhand,accordingtotheproposedmethod,suchcomputationalburdenscanbeeffectivelyreducedusingthealgorithmforremovingtheredundantdata.Inaddition,theeffectivenessoftheproposedmethodhavebeenverifiedbyanumericalsimulationexample.Theapplicationofthenewlyproposedschemeforrealsystemsandtheextensiontomultivariablecasesarecurrentlyunderconsideration.基于記憶的在線非線性系統(tǒng)PID控制器整定摘要由于大部分控制過程具有非線性,所以設計一種能夠處理具有非線性系統(tǒng)的控制器就顯得尤為重要。另一方面,PID控制器也被廣泛應用于過程控制系統(tǒng)中。因此,在本文中提出了一種基于記憶的MB模型用來處理非線性PID控制器設計方案。通過MB方法,可以自動產生基于存儲在數(shù)據(jù)中的控制對象的輸入/輸出數(shù)據(jù)對的本地模型。這種設計方案,通過存儲在數(shù)據(jù)庫中的輸入/輸出數(shù)據(jù)產生變量。即使系統(tǒng)具有非線性,該設計方案。同樣能在線調整PID變量。最后,我們通過一個仿真系統(tǒng)的數(shù)據(jù)演化過程來證明該方案的有效性。Ⅰ引言近年來,像自適應控制理論,魯棒控制理論等一些復雜的控制算法被提出和應用。但是,在工業(yè)過程中PID控制器依然占80%甚至更多的比例,其原因如下所述:(1)控制結構簡單;(2)控制參數(shù)物理意義清晰;(3)能夠很好地滿足客戶要求。因此,PID控制器的設計自然具有強大的吸引力。但是由于大部分控制系統(tǒng)具有非線性,簡單地應用固定PID參數(shù)很難得到交好的控制效果。所以到現(xiàn)在為止已經(jīng)提出了神經(jīng)網(wǎng)絡(NN)和遺傳算法(GA)等PID參數(shù)整定方法。使用這些方法的學習代價是很大的,而且PID參數(shù)由于系統(tǒng)的非線性特征不能得到充分的調整。因而通過這些方便的方法不能得到很好的控制效果。不過,計算機的發(fā)展讓我們能夠記憶,快速檢索以及讀取大量數(shù)據(jù)?;谶@些優(yōu)點我們提出了以下方案:無論何時獲得的新數(shù)據(jù)都被保存下來。被稱為“詢問”的信息要求從保存的數(shù)據(jù)中提取出來。這種基于記憶模型(MB)的方法叫做JIT方法。懶散學習方法或MOD方法。并且在過去的十年中,這些方法被給予了大量的關注。在本文中討論了一種基于MB模型的PID控制器設計方案。一些基于用屬于MB模型方法的JIT方法的PID控制器已經(jīng)被提出。基于以前的方法,用JIT方法的目的是應用PID結構的輔助反饋控制器,但是,在相關信號改變的情況下的非線性,將會導致跟蹤特性沒有足夠的保證,因為在整個控制系統(tǒng)中控制器不包含任何的積分行為。另一方面,后一種方法具有一個PID控制結構。PID參數(shù)不是通過與控制對象的特征相一致的在線方式整定的。因此,在本文中我們設計提出了一種基于MB模型的方法。通過這種新方法,有MB模型方法得到的PID參數(shù)在比例環(huán)節(jié)中得到了充分的整定,這主要是為了控制誤差。規(guī)劃后的PID參數(shù)被保存在數(shù)據(jù)庫中。因此,回游更多的與空話子對象特征相一致的適當?shù)腜ID參數(shù)被保存。再者,我們進一步提出了一種避免存儲數(shù)據(jù)過分增長的算法。這種算法可以減少記憶和計算機花費。最后,這種新方法的有效度通過一個仿真模型來檢測。Ⅱ基于記憶模型的PID控制器設計方法AMB模型方法第一,我們引入了如下時間遞減非線性系統(tǒng)(1)其中,表示系統(tǒng)輸出,表示非線性函數(shù),被稱為‘信息矢量’通過下式定義:(2)其中,表示系統(tǒng)輸入,另外,和分別表示系統(tǒng)的輸出和輸入的階數(shù)。在MB模型方法中數(shù)據(jù)一等式(2)中的信息矢量的形式被存儲。在估計輸出時,需要,因此被叫做詢問。一些相似相鄰數(shù)被從數(shù)據(jù)庫中選出后,我們可以通過這些相鄰數(shù)而獲得系統(tǒng)的預測值。B基于MB模型方法的控制器設計在本文中我們引用了具有如下PID結構的控制規(guī)律:(3)(4)其中表示誤差控制信號,有如下定義:(5)其中表示相關信號,另外,,和分別表示比例增益,調節(jié)時間和微分時間,表示采樣時間。在這里等式(4)中的,和有如下聯(lián)系:=,=/和=/。表示操作者的區(qū)別,并被定義為:。在這里由于非線性的存在我們將很難獲得好的控制效果,這是在式(4)中的,,確定不變的假設下才成立的。因此,一種新的控制方案被提出來,這種方法能夠通過與系統(tǒng)特征保持一致的在線方式調整PID參數(shù)。因而有了如下取代等式(4)的具有可變PID參數(shù)的PID控制規(guī)律:(6)現(xiàn)在等式(6)可以重新變成如下形式:(7)(8)(9)其中表示一個線性函數(shù),將式(1)和式(2)帶入式(7)和式(8)中我們可以得到如下等式:(10)(11)其中,ny≥3,nu≥2,h(1)表示一個非線性函數(shù),因而通過下面等式給出:(12)(13)其中,表示非線性函數(shù),既然下一個輸出不能在t時刻得到我們就用來代替。為了使控制系統(tǒng)能夠識別本文中所定義的—>,等式(13)中的可以被重新寫成如下形式:(14)經(jīng)過以上的準備工作以后,一種基于MB模型方法的PID控制被設計出來了。下面對控制器的設計算法作簡單闡述。第一步:產生初試數(shù)據(jù)庫如果以前的數(shù)據(jù)沒有被全部保存,MB模型方法將不能工作。因此首先通過Z-N方法或CHR方法計算出PID參數(shù)。這兩種方法都是在原有歷史記錄的基礎上初始化數(shù)據(jù)庫。在下面等式中存在的被稱為初試數(shù)據(jù)庫。(15)其中,和分別由式(14)和式(9)獲得。表示存儲在初始數(shù)據(jù)庫中的信息矢量的數(shù)量。注意它在初始信息矢量中的PID參數(shù)是相等的,即:。第二步:計算距離,選擇相鄰數(shù)詢問和信息矢量之間的距離通過下述具有一定重復的—一范數(shù)計算出(16)表示當詢問給出時,數(shù)據(jù)庫中存儲的信息矢量數(shù)量表示第個信息矢量的第個元素。類似地,表示在t時刻詢問第個元素。表示在數(shù)據(jù)庫中所存儲的所有信息矢量的第個元素的最大值。類似地,則表示最小元素,在這里具有最小距離的被從所有的信息矢量中選擇出來。第三步:建立本地模型接下來,使用第一步中所選擇的,然后基于如下線性平均質量建立本地模型: (17)其中,表示和第個信息矢量相一致的重量。取自于所選擇的鄰居,并且通過下式計算:(18)第四步:數(shù)據(jù)調整在和控制對象相一致的現(xiàn)在狀態(tài)不能有效保存到數(shù)據(jù)庫中的情況下,一個適當?shù)腜ID參數(shù)不可能被有效的計算出來。為了減少控制誤差,必須調整PID參數(shù)。因此在步驟3中所得出來的PID參數(shù)將作和控制誤差一致的更新。然后這些新的PID參數(shù)被保存到數(shù)據(jù)庫中。如下懸崖遞減法被用來規(guī)范PID參數(shù)。(19)(20)其中表示學習率。下式所示表示誤差指標:(21)(22)表示相關模型的輸出,該模型如下所示:(23)(24)在這里,是基于文獻[13]而設計的。與等式(19)的每一部分區(qū)別描述如下:(25)注意到為了計算等式(25)要求一個考慮系統(tǒng)雅可比行列式的優(yōu)先信息。在這里通過關系式,系統(tǒng)的雅可比行列式可以通過如下等式獲得:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 微信使用教程課件
- 內河港口項目建設可行性分析
- 基于裝配式建筑施工安全風險的多目標優(yōu)化研究
- 天然氣管網(wǎng)項目可行性研究報告
- 2021年萬圣節(jié)活動總結
- 消防安全教育主題班會活動總結
- 材料研究生實習報告
- 酒店職員辭職信8篇
- 師德師風培訓活動總結
- YTH-IN-1-生命科學試劑-MCE
- (2024年)網(wǎng)約車培訓課件共5文檔
- 【營銷策劃】洗發(fā)水品牌市場調研+競品分析案-市場營銷策劃-2023年營銷干貨合集-3月份匯總-p
- 《中藥鑒定技術》課件-三七的鑒定
- 2022-2023學年廣東省廣州市白云區(qū)八年級(上)期末歷史試卷(含答案)
- 車輛采購投標方案(技術方案)
- 湖南省2022-2023學年七年級上學期語文期末試卷(含答案)
- 膽結石 健康宣教
- 發(fā)運工作總結
- 共享設備行業(yè)分析
- 個人墊資合同
- GB/T 10739-2023紙、紙板和紙漿試樣處理和試驗的標準大氣條件
評論
0/150
提交評論