版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆黑龍江省大慶市四中高三數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),當(dāng)時(shí),的取值范圍為,則實(shí)數(shù)m的取值范圍是()A. B. C. D.2.已知為圓:上任意一點(diǎn),,若線段的垂直平分線交直線于點(diǎn),則點(diǎn)的軌跡方程為()A. B.C.() D.()3.已知(為虛數(shù)單位,為的共軛復(fù)數(shù)),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在().A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知集合,則等于()A. B. C. D.5.我國(guó)古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對(duì)的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.6.已知復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則下列結(jié)論正確的是()A. B.復(fù)數(shù)的共軛復(fù)數(shù)是C. D.7.執(zhí)行下面的程序框圖,如果輸入,,則計(jì)算機(jī)輸出的數(shù)是()A. B. C. D.8.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實(shí)數(shù)的取值范圍是A. B. C. D.9.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.10.要得到函數(shù)的圖像,只需把函數(shù)的圖像()A.向左平移個(gè)單位 B.向左平移個(gè)單位C.向右平移個(gè)單位 D.向右平移個(gè)單位11.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對(duì)于恒成立,則的取值范圍是A. B. C. D.12.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是由一個(gè)棱柱挖去一個(gè)棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.32二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于空間兩條不同直線m、n,兩個(gè)不同平面、,有下列四個(gè)命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號(hào)為______.14.函數(shù)在區(qū)間(-∞,1)上遞增,則實(shí)數(shù)a的取值范圍是____15.若,則________.16.在棱長(zhǎng)為的正方體中,是面對(duì)角線上兩個(gè)不同的動(dòng)點(diǎn).以下四個(gè)命題:①存在兩點(diǎn),使;②存在兩點(diǎn),使與直線都成的角;③若,則四面體的體積一定是定值;④若,則四面體在該正方體六個(gè)面上的正投影的面積的和為定值.其中為真命題的是____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)一酒企為擴(kuò)大生產(chǎn)規(guī)模,決定新建一個(gè)底面為長(zhǎng)方形的室內(nèi)發(fā)酵館,發(fā)酵館內(nèi)有一個(gè)無蓋長(zhǎng)方體發(fā)酵池,其底面為長(zhǎng)方形(如圖所示),其中.結(jié)合現(xiàn)有的生產(chǎn)規(guī)模,設(shè)定修建的發(fā)酵池容積為450米,深2米.若池底和池壁每平方米的造價(jià)分別為200元和150元,發(fā)酵池造價(jià)總費(fèi)用不超過65400元(1)求發(fā)酵池邊長(zhǎng)的范圍;(2)在建發(fā)酵館時(shí),發(fā)酵池的四周要分別留出兩條寬為4米和米的走道(為常數(shù)).問:發(fā)酵池的邊長(zhǎng)如何設(shè)計(jì),可使得發(fā)酵館占地面積最小.18.(12分)如圖,在棱長(zhǎng)為的正方形中,,分別為,邊上的中點(diǎn),現(xiàn)以為折痕將點(diǎn)旋轉(zhuǎn)至點(diǎn)的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.19.(12分)已知函數(shù)(1)當(dāng)時(shí),證明,在恒成立;(2)若在處取得極大值,求的取值范圍.20.(12分)已知橢圓的離心率為,點(diǎn)在橢圓上.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線交橢圓于兩點(diǎn),線段的中點(diǎn)在直線上,求證:線段的中垂線恒過定點(diǎn).21.(12分)已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;(2)若射線與曲線C交于點(diǎn)A(不同于極點(diǎn)O),與直線l交于點(diǎn)B,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
求導(dǎo)分析函數(shù)在時(shí)的單調(diào)性、極值,可得時(shí),滿足題意,再在時(shí),求解的x的范圍,綜合可得結(jié)果.【詳解】當(dāng)時(shí),,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時(shí),的取值范圍為,∴又當(dāng)時(shí),令,則,即,∴綜上所述,的取值范圍為.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.2、B【解析】
如圖所示:連接,根據(jù)垂直平分線知,,故軌跡為雙曲線,計(jì)算得到答案.【詳解】如圖所示:連接,根據(jù)垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點(diǎn)睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關(guān)鍵.3、D【解析】
設(shè),由,得,利用復(fù)數(shù)相等建立方程組即可.【詳解】設(shè),則,所以,解得,故,復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,涉及到共軛復(fù)數(shù)的定義、復(fù)數(shù)的模等知識(shí),考查學(xué)生的基本計(jì)算能力,是一道容易題.4、C【解析】
先化簡(jiǎn)集合A,再與集合B求交集.【詳解】因?yàn)椋?,所?故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算以及分式不等式的解法,屬于基礎(chǔ)題.5、A【解析】
根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因?yàn)?,所以,由余弦定理,所以,由的面積公式得故選:A【點(diǎn)睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運(yùn)算求解的能力,屬于中檔題.6、D【解析】
首先求得,然后根據(jù)復(fù)數(shù)乘法運(yùn)算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運(yùn)算對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】由題意知復(fù)數(shù),則,所以A選項(xiàng)不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項(xiàng)不正確;,所以C選項(xiàng)不正確;,所以D選項(xiàng)正確.故選:D【點(diǎn)睛】本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運(yùn)算等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想.7、B【解析】
先明確該程序框圖的功能是計(jì)算兩個(gè)數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計(jì)算即可.【詳解】本程序框圖的功能是計(jì)算,中的最大公約數(shù),所以,,,故當(dāng)輸入,,則計(jì)算機(jī)輸出的數(shù)是57.故選:B.【點(diǎn)睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎(chǔ)題.8、D【解析】
由題意得,表示不等式的解集中整數(shù)解之和為6.當(dāng)時(shí),數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無數(shù)多個(gè),解集中的整數(shù)解之和一定大于6.當(dāng)時(shí),,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個(gè)整數(shù)解,為1,2,3,滿足,所以符合題意.當(dāng)時(shí),作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當(dāng)時(shí),實(shí)數(shù)的取值范圍是.故選D.9、D【解析】
由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.10、A【解析】
運(yùn)用輔助角公式將兩個(gè)函數(shù)公式進(jìn)行變形得以及,按四個(gè)選項(xiàng)分別對(duì)變形,整理后與對(duì)比,從而可選出正確答案.【詳解】解:.對(duì)于A:可得.故選:A.【點(diǎn)睛】本題考查了三角函數(shù)圖像平移變換,考查了輔助角公式.本題的易錯(cuò)點(diǎn)有兩個(gè),一個(gè)是混淆了已知函數(shù)和目標(biāo)函數(shù);二是在平移時(shí),忘記乘了自變量前的系數(shù).11、A【解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對(duì)稱又在上是增函數(shù)在上是減函數(shù),即對(duì)于恒成立在上恒成立,即的取值范圍為:本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.12、B【解析】
由三視圖可知該幾何體是一個(gè)底面邊長(zhǎng)為4的正方形,高為5的正四棱柱,挖去一個(gè)底面邊長(zhǎng)為4,高為3的正四棱錐,利用體積公式,即可求解。【詳解】由題意,幾何體的三視圖可知該幾何體是一個(gè)底面邊長(zhǎng)為4的正方形,高為5的正四棱柱,挖去一個(gè)底面邊長(zhǎng)為4,高為3的正四棱錐,所以幾何體的體積為,故選B。【點(diǎn)睛】本題考查了幾何體的三視圖及體積的計(jì)算,在由三視圖還原為空間幾何體的實(shí)際形狀時(shí),要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實(shí)線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解。二、填空題:本題共4小題,每小題5分,共20分。13、③④【解析】
由直線與直線的位置關(guān)系,直線與平面的位置關(guān)系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關(guān)系是平行、相交或異面,①錯(cuò);②若且,則或者,②錯(cuò);③若,設(shè)過的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.【點(diǎn)睛】本題考查直線與直線的位置關(guān)系,直線與平面的位置關(guān)系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關(guān)系,掌握空間線線、線面、面面位置關(guān)系是解題基礎(chǔ).14、【解析】
根據(jù)復(fù)合函數(shù)單調(diào)性同增異減,結(jié)合二次函數(shù)的性質(zhì)、對(duì)數(shù)型函數(shù)的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數(shù)的性質(zhì)和復(fù)合函數(shù)的單調(diào)性可得解得.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)對(duì)數(shù)型復(fù)合函數(shù)的單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.15、13【解析】
由導(dǎo)函數(shù)的應(yīng)用得:設(shè),,所以,,又,所以,即,由二項(xiàng)式定理:令得:,再由,求出,從而得到的值;【詳解】解:設(shè),,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【點(diǎn)睛】本題考查了導(dǎo)函數(shù)的應(yīng)用、二項(xiàng)式定理,屬于中檔題16、①③④【解析】
對(duì)于①中,當(dāng)點(diǎn)與點(diǎn)重合,與點(diǎn)重合時(shí),可判斷①正確;當(dāng)點(diǎn)點(diǎn)與點(diǎn)重合,與直線所成的角最小為,可判定②不正確;根據(jù)平面將四面體可分成兩個(gè)底面均為平面,高之和為的棱錐,可判定③正確;四面體在上下兩個(gè)底面和在四個(gè)側(cè)面上的投影,均為定值,可判定④正確.【詳解】對(duì)于①中,當(dāng)點(diǎn)與點(diǎn)重合,與點(diǎn)重合時(shí),,所以①正確;對(duì)于②中,當(dāng)點(diǎn)點(diǎn)與點(diǎn)重合,與直線所成的角最小,此時(shí)兩異面直線的夾角為,所以②不正確;對(duì)于③中,設(shè)平面兩條對(duì)角線交點(diǎn)為,可得平面,平面將四面體可分成兩個(gè)底面均為平面,高之和為的棱錐,所以四面體的體積一定是定值,所以③正確;對(duì)于④中,四面體在上下兩個(gè)底面上的投影是對(duì)角線互相垂直且對(duì)角線長(zhǎng)度均為1的四邊形,其面積為定義,四面體在四個(gè)側(cè)面上的投影,均為上底為,下底和高均為1的梯形,其面積為定值,故四面體在該正方體六個(gè)面上的正投影的面積的和為定值,所以④正確.故答案為:①③④.【點(diǎn)睛】本題主要考查了以空間幾何體的結(jié)構(gòu)特征為載體的謎題的真假判定及應(yīng)用,其中解答中涉及到棱柱的集合特征,異面直線的關(guān)系和椎體的體積,以及投影的綜合應(yīng)用,著重考查了推理與論證能力,屬于中檔試題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)當(dāng)時(shí),,米時(shí),發(fā)酵館的占地面積最??;當(dāng)時(shí),時(shí),發(fā)酵館的占地面積最?。划?dāng)時(shí),米時(shí),發(fā)酵館的占地面積最小.【解析】
(1)設(shè)米,總費(fèi)用為,解即可得解;(2)結(jié)合(1)可得占地面積結(jié)合導(dǎo)函數(shù)分類討論即可求得最值.【詳解】(1)由題意知:矩形面積米,設(shè)米,則米,由題意知:,得,設(shè)總費(fèi)用為,則,解得:,又,故,所以發(fā)酵池邊長(zhǎng)的范圍是不小于15米,且不超過25米;(2)設(shè)發(fā)酵館的占地面積為由(1)知:,①時(shí),,在上遞增,則,即米時(shí),發(fā)酵館的占地面積最??;②時(shí),,在上遞減,則,即米時(shí),發(fā)酵館的占地面積最?。虎蹠r(shí),時(shí),,遞減;時(shí),遞增,因此,即時(shí),發(fā)酵館的占地面積最??;綜上所述:當(dāng)時(shí),,米時(shí),發(fā)酵館的占地面積最小;當(dāng)時(shí),時(shí),發(fā)酵館的占地面積最小;當(dāng)時(shí),米時(shí),發(fā)酵館的占地面積最小.【點(diǎn)睛】此題考查函數(shù)模型的應(yīng)用,關(guān)鍵在于根據(jù)題意恰當(dāng)?shù)亟⒛P?,利用函?shù)性質(zhì)討論最值取得的情況.18、(1)證明見詳解;(2)【解析】
(1)在折疊前的正方形ABCD中,作出對(duì)角線AC,BD,由正方形性質(zhì)知,又//,則于點(diǎn)H,則由直二面角可知面,故.又,則面,故命題得證;(2)作出線面角,在直角三角形中求解該角的正弦值.【詳解】解:(1)證明:在正方形中,連結(jié)交于.因?yàn)?/,故可得,即又旋轉(zhuǎn)不改變上述垂直關(guān)系,且平面,面,又面,所以(2)因?yàn)闉橹倍娼?,故平面平?又其交線為,且平面,故可得底面,連結(jié),則即為與面所成角,連結(jié)交于,在中,,在中,.所以與面所成角的正弦值為.【點(diǎn)睛】本題考查了線面垂直的證明與性質(zhì),利用定義求線面角,屬于中檔題.19、(1)證明見解析(2)【解析】
(1)根據(jù),求導(dǎo),令,用導(dǎo)數(shù)法求其最小值.設(shè)研究在處左正右負(fù),求導(dǎo),分,,三種情況討論求解.【詳解】(1)因?yàn)?,所以,令,則,所以是的增函數(shù),故,即.因?yàn)樗?,①?dāng)時(shí),,所以函數(shù)在上單調(diào)遞增.若,則若,則所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,所以在處取得極小值,不符合題意,②當(dāng)時(shí),所以函數(shù)在上單調(diào)遞減.若,則若,則所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,所以在處取得極大值,符合題意.③當(dāng)時(shí),,使得,即,但當(dāng)時(shí),即所以函數(shù)在上單調(diào)遞減,所以,即函數(shù))在上單調(diào)遞減,不符合題意綜上所述,的取值范圍是【點(diǎn)睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性和極值,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.20、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)把點(diǎn)代入橢圓方程,結(jié)合離心率得到關(guān)于的方程,解方程即可;(Ⅱ)聯(lián)立直線與橢圓方程得到關(guān)于的一元二次方程,利用韋達(dá)定理和中垂線的定義求出線段的中垂線方程即可證明.【詳解】(Ⅰ)由已知橢圓過點(diǎn)得,,又,得,所以,即橢圓方程為.(Ⅱ)證明:由,得,由,得,由韋達(dá)定理可得,,設(shè)的中點(diǎn)為,得,即,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度大數(shù)據(jù)分析處理個(gè)人勞務(wù)合同3篇
- 2025年浙江嘉興市海寧市城投集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 二零二五年度鞋類產(chǎn)品回收與再利用技術(shù)研究合同3篇
- 2025年度個(gè)人健康保險(xiǎn)連帶擔(dān)保協(xié)議4篇
- 2025年遼寧鞍山國(guó)家高新技術(shù)產(chǎn)業(yè)開發(fā)區(qū)國(guó)有企業(yè)招聘筆試參考題庫(kù)附帶答案詳解
- 2025年度個(gè)人果園生態(tài)旅游開發(fā)與承包經(jīng)營(yíng)合同4篇
- 二零二五年度綠色能源貸款擔(dān)保服務(wù)協(xié)議4篇
- 二零二五年度門窗五金件行業(yè)人才培養(yǎng)與引進(jìn)合同4篇
- 二零二五年度民辦學(xué)校學(xué)生宿舍維修與設(shè)施更新合同4篇
- 2025年度智能門禁系統(tǒng)節(jié)能環(huán)保改造合同文檔4篇
- 第22單元(二次函數(shù))-單元測(cè)試卷(2)-2024-2025學(xué)年數(shù)學(xué)人教版九年級(jí)上冊(cè)(含答案解析)
- 藍(lán)色3D風(fēng)工作總結(jié)匯報(bào)模板
- 安全常識(shí)課件
- 河北省石家莊市2023-2024學(xué)年高一上學(xué)期期末聯(lián)考化學(xué)試題(含答案)
- 2024年江蘇省導(dǎo)游服務(wù)技能大賽理論考試題庫(kù)(含答案)
- 2024年中考英語(yǔ)閱讀理解表格型解題技巧講解(含練習(xí)題及答案)
- 新版中國(guó)食物成分表
- 浙江省溫州市溫州中學(xué)2025屆數(shù)學(xué)高二上期末綜合測(cè)試試題含解析
- 2024年山東省青島市中考生物試題(含答案)
- 保安公司市場(chǎng)拓展方案-保安拓展工作方案
- GB/T 15843.2-2024網(wǎng)絡(luò)安全技術(shù)實(shí)體鑒別第2部分:采用鑒別式加密的機(jī)制
評(píng)論
0/150
提交評(píng)論