版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆安徽省滁州市定遠縣中考數學猜題卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如果實數a=,且a在數軸上對應點的位置如圖所示,其中正確的是()A.B.C.D.2.在數軸上表示不等式組的解集,正確的是()A. B.C. D.3.下列事件中是必然事件的是()A.早晨的太陽一定從東方升起B(yǎng).中秋節(jié)的晚上一定能看到月亮C.打開電視機,正在播少兒節(jié)目D.小紅今年14歲,她一定是初中學生4.下列說法正確的是()A.某工廠質檢員檢測某批燈泡的使用壽命采用普查法B.已知一組數據1,a,4,4,9,它的平均數是4,則這組數據的方差是7.6C.12名同學中有兩人的出生月份相同是必然事件D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”中,任取其中一個圖形,恰好既是中心對稱圖形,又是軸對稱圖形的概率是5.下列各式中,正確的是()A.t5·t5=2t5B.t4+t2=t6C.t3·t4=t12D.t2·t3=t56.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.7.如圖,在平面直角坐標系中,位于第二象限,點的坐標是,先把向右平移3個單位長度得到,再把繞點順時針旋轉得到,則點的對應點的坐標是()A. B. C. D.8.如圖,直線AB與?MNPQ的四邊所在直線分別交于A、B、C、D,則圖中的相似三角形有()A.4對B.5對C.6對D.7對9.如圖,已知,那么下列結論正確的是()A. B. C. D.10.下列說法中不正確的是()A.全等三角形的周長相等B.全等三角形的面積相等C.全等三角形能重合D.全等三角形一定是等邊三角形二、填空題(本大題共6個小題,每小題3分,共18分)11.若方程x2﹣4x+1=0的兩根是x1,x2,則x1(1+x2)+x2的值為_____.12.函數的自變量x的取值范圍是_____.13.如圖△ABC中,∠C=90°,AC=8cm,AB的垂直平分線MN交AC于D,連接BD,若cos∠BDC=,則BC的長為_____.14.八位女生的體重(單位:kg)分別為36、42、38、40、42、35、45、38,則這八位女生的體重的中位數為_____kg.15.拋擲一枚均勻的硬幣,前3次都正面朝上,第4次正面朝上的概率為________.16.在矩形ABCD中,AB=4,BC=3,點P在AB上.若將△DAP沿DP折疊,使點A落在矩形對角線上的處,則AP的長為__________.三、解答題(共8題,共72分)17.(8分)如圖1,四邊形ABCD中,,,點P為DC上一點,且,分別過點A和點C作直線BP的垂線,垂足為點E和點F.證明:∽;若,求的值;如圖2,若,設的平分線AG交直線BP于當,時,求線段AG的長.18.(8分)如圖,拋物線與x軸交于A,B,與y軸交于點C(0,2),直線經過點A,C.(1)求拋物線的解析式;(2)點P為直線AC上方拋物線上一動點;①連接PO,交AC于點E,求的最大值;②過點P作PF⊥AC,垂足為點F,連接PC,是否存在點P,使△PFC中的一個角等于∠CAB的2倍?若存在,請直接寫出點P的坐標;若不存在,請說明理由.19.(8分)某生姜種植基地計劃種植A,B兩種生姜30畝.已知A,B兩種生姜的年產量分別為2000千克/畝、2500千克/畝,收購單價分別是8元/千克、7元/千克.(1)若該基地收獲兩種生姜的年總產量為68000千克,求A,B兩種生姜各種多少畝?(2)若要求種植A種生姜的畝數不少于B種的一半,那么種植A,B兩種生姜各多少畝時,全部收購該基地生姜的年總收入最多?最多是多少元?20.(8分)為了了解同學們每月零花錢的數額,校園小記者隨機調查了本校部分同學,根據調查結果,繪制出了如下兩個尚不完整的統(tǒng)計圖表.調查結果統(tǒng)計表組別分組(單位:元)人數A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bEx≥1202請根據以上圖表,解答下列問題:填空:這次被調查的同學共有人,a+b=,m=;求扇形統(tǒng)計圖中扇形C的圓心角度數;該校共有學生1000人,請估計每月零花錢的數額x在60≤x<120范圍的人數.21.(8分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分的學生成績進行統(tǒng)計,繪制統(tǒng)計圖如圖(不完整).類別分數段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5請你根據上面的信息,解答下列問題.(1)若A組的頻數比B組小24,求頻數直方圖中的a,b的值;(2)在扇形統(tǒng)計圖中,D部分所對的圓心角為n°,求n的值并補全頻數直方圖;(3)若成績在80分以上為優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀的學生有多少名?22.(10分)我市正在開展“食品安全城市”創(chuàng)建活動,為了解學生對食品安全知識的了解情況,學校隨機抽取了部分學生進行問卷調查,將調查結果按照“A非常了解、B了解、C了解較少、D不了解”四類分別進行統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據圖中信息,解答下列問題:此次共調查了名學生;扇形統(tǒng)計圖中D所在扇形的圓心角為;將上面的條形統(tǒng)計圖補充完整;若該校共有800名學生,請你估計對食品安全知識“非常了解”的學生的人數.23.(12分)-()-1+3tan60°24.某商場甲、乙、丙三名業(yè)務員2018年前5個月的銷售額(單位:萬元)如下表:月份銷售額人員第1月第2月第3月第4月第5月甲691088乙57899丙5910511(1)根據上表中的數據,將下表補充完整:統(tǒng)計值數值人員平均數(萬元)眾數(萬元)中位數(萬元)方差甲881.76乙7.682.24丙85(2)甲、乙、丙三名業(yè)務員都說自己的銷售業(yè)績好,你贊同誰的說法?請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】分析:估計的大小,進而在數軸上找到相應的位置,即可得到答案.詳解:由被開方數越大算術平方根越大,即故選C.點睛:考查了實數與數軸的的對應關系,以及估算無理數的大小,解決本題的關鍵是估計的大小.2、C【解題分析】
解不等式組,再將解集在數軸上正確表示出來即可【題目詳解】解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集為﹣1≤x<2,故選C.【題目點撥】本題主要考查了一元一次不等式組的求解,求出題中不等式組的解集是解題的關鍵.3、A【解題分析】
必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件,依據定義即可求解.【題目詳解】解:B、C、D選項為不確定事件,即隨機事件.故錯誤;
一定發(fā)生的事件只有第一個答案,早晨的太陽一定從東方升起.故選A.【題目點撥】該題考查的是對必然事件的概念的理解;必然事件就是一定發(fā)生的事件.4、B【解題分析】
分別用方差、全面調查與抽樣調查、隨機事件及概率的知識逐一進行判斷即可得到答案.【題目詳解】A.某工廠質檢員檢測某批燈泡的使用壽命時,檢測范圍比較大,因此適宜采用抽樣調查的方法,故本選項錯誤;B.根據平均數是4求得a的值為2,則方差為[(1?4)2+(2?4)2+(4?4)2+(4?4)2+(9?4)2]=7.6,故本選項正確;C.12個同學的生日月份可能互不相同,故本事件是隨機事件,故錯誤;D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”六個圖形中有3個既是軸對稱圖形,又是中心對稱圖形,所以,恰好既是中心對稱圖形,又是軸對稱圖形的概率是,故本選項錯誤.故答案選B.【題目點撥】本題考查的知識點是概率公式、全面調查與抽樣調查、方差及隨機事件,解題的關鍵是熟練的掌握概率公式、全面調查與抽樣調查、方差及隨機事件.5、D【解題分析】選項A,根據同底數冪的乘法可得原式=t10;選項B,不是同類項,不能合并;選項C,根據同底數冪的乘法可得原式=t7;選項D,根據同底數冪的乘法可得原式=t5,四個選項中只有選項D正確,故選D.6、A【解題分析】
根據軸對稱圖形的概念對各選項分析判斷即可得解.【題目詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【題目點撥】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.7、D【解題分析】
根據要求畫出圖形,即可解決問題.【題目詳解】解:根據題意,作出圖形,如圖:觀察圖象可知:A2(4,2);故選:D.【題目點撥】本題考查平移變換,旋轉變換等知識,解題的關鍵是正確畫出圖象,屬于中考??碱}型.8、C【解題分析】由題意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以圖中共有六對相似三角形.故選C.9、A【解題分析】
已知AB∥CD∥EF,根據平行線分線段成比例定理,對各項進行分析即可.【題目詳解】∵AB∥CD∥EF,∴.故選A.【題目點撥】本題考查平行線分線段成比例定理,找準對應關系,避免錯選其他答案.10、D【解題分析】
根據全等三角形的性質可知A,B,C命題均正確,故選項均錯誤;D.錯誤,全等三角也可能是直角三角,故選項正確.故選D.【題目點撥】本題考查全等三角形的性質,兩三角形全等,其對應邊和對應角都相等.二、填空題(本大題共6個小題,每小題3分,共18分)11、5【解題分析】由題意得,,.∴原式12、x≠1【解題分析】
根據分母不等于2列式計算即可得解.【題目詳解】由題意得,x-1≠2,解得x≠1.故答案為x≠1.【題目點撥】本題考查的知識點為:分式有意義,分母不為2.13、4【解題分析】試題解析:∵可∴設DC=3x,BD=5x,又∵MN是線段AB的垂直平分線,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案為:4cm.14、1【解題分析】
根據中位數的定義,結合圖表信息解答即可.【題目詳解】將這八位女生的體重重新排列為:35、36、38、38、40、42、42、45,則這八位女生的體重的中位數為=1kg,故答案為1.【題目點撥】本題考查了中位數,確定中位數的時候一定要先排好順序,然后再根據個數是奇數或偶數來確定中位數,如果數據有奇數個,則正中間的數字即為所求,如果是偶數個則找中間兩位數的平均數,中位數有時不一定是這組數據的數.15、【解題分析】
根據概率的計算方法求解即可.【題目詳解】∵第4次拋擲一枚均勻的硬幣時,正面和反面朝上的概率相等,∴第4次正面朝上的概率為.故答案為:.【題目點撥】此題考查了概率公式的計算方法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.16、或【解題分析】
①點A落在矩形對角線BD上,如圖1,∵AB=4,BC=3,∴BD=5,根據折疊的性質,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,設AP=x,則BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=,∴AP=;②點A落在矩形對角線AC上,如圖2,根據折疊的性質可知DP⊥AC,∴△DAP∽△ABC,∴,∴AP===.故答案為或.三、解答題(共8題,共72分)17、(1)證明見解析;(2);(3).【解題分析】
由余角的性質可得,即可證∽;由相似三角形的性質可得,由等腰三角形的性質可得,即可求的值;由題意可證∽,可得,可求,由等腰三角形的性質可得AE平分,可證,可得是等腰直角三角形,即可求AG的長.【題目詳解】證明:,又,又,∽∽,又,,如圖,延長AD與BG的延長線交于H點,∽∴,由可知≌,,代入上式可得,∽,,,∴,,平分又平分,,是等腰直角三角形.∴.【題目點撥】本題考查的知識點是全等三角形的判定和性質,相似三角形的判定和性質,解題關鍵是添加恰當輔助線構造相似三角形.18、(1);(2)①有最大值1;②(2,3)或(,)【解題分析】
(1)根據自變量與函數值的對應關系,可得A,C點坐標,根據代定系數法,可得函數解析式;(2)①根據相似三角形的判定與性質,可得,根據平行于y軸直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得二次函數,根據二次函數的性質,可得答案;②根據勾股定理的逆定理得到△ABC是以∠ACB為直角的直角三角形,取AB的中點D,求得D(,0),得到DA=DC=DB=,過P作x軸的平行線交y軸于R,交AC于G,情況一:如圖,∠PCF=2∠BAC=∠DGC+∠CDG,情況二,∠FPC=2∠BAC,解直角三角形即可得到結論.【題目詳解】(1)當x=0時,y=2,即C(0,2),當y=0時,x=4,即A(4,0),將A,C點坐標代入函數解析式,得,解得,拋物線的解析是為;
(2)過點P向x軸做垂線,交直線AC于點M,交x軸于點N,∵直線PN∥y軸,∴△PEM~△OEC,∴把x=0代入y=-x+2,得y=2,即OC=2,設點P(x,-x2+x+2),則點M(x,-x+2),∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,∴=,∵0<x<4,∴當x=2時,=有最大值1.②∵A(4,0),B(-1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB為直角的直角三角形,取AB的中點D,∴D(,0),∴DA=DC=DB=,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=,過P作x軸的平行線交y軸于R,交AC的延長線于G,情況一:如圖,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=,即,令P(a,-a2+a+2),∴PR=a,RC=-a2+a,∴,∴a1=0(舍去),a2=2,∴xP=2,-a2+a+2=3,P(2,3)情況二,∴∠FPC=2∠BAC,∴tan∠FPC=,設FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=,∴FG=6k,∴CG=2k,PG=3k,∴RC=k,RG=k,PR=3k-k=k,∴,∴a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),綜上所述:P點坐標是(2,3)或(,).【題目點撥】本題考查了二次函數綜合題,解(1)的關鍵是待定系數法;解(2)的關鍵是利用相似三角形的判定與性質得出,又利用了二次函數的性質;解(3)的關鍵是利用解直角三角形,要分類討論,以防遺漏.19、(1)種植A種生姜14畝,種植B種生姜16畝;(2)種植A種生姜10畝,種植B種生姜20畝時,全部收購該基地生姜的年總收入最多,最多為510000元.【解題分析】試題分析:(1)設該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據:A種生姜的產量+B種生姜的產量=總產量,列方程求解;(2)設A種生姜x畝,根據A種生姜的畝數不少于B種的一半,列不等式求x的取值范圍,再根據(1)的等量關系列出函數關系式,在x的取值范圍內求總產量的最大值.試題解析:(1)設該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據題意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:種植A種生姜14畝,種植B種生姜16畝;(2)由題意得,x≥12設全部收購該基地生姜的年總收入為y元,則y=8×2000x+7×2500(30-x)=-1500x+525000,∵y隨x的增大而減小,∴當x=10時,y有最大值,此時,30-x=20,y的最大值為510000元,答:種植A種生姜10畝,種植B種生姜20畝時,全部收購該基地生姜的年總收入最多,最多為510000元.【題目點撥】本題考查了一次函數的應用.關鍵是根據總產量=A種生姜的產量+B種生姜的產量,列方程或函數關系式.20、50;28;8【解題分析】【分析】1)用B組的人數除以B組人數所占的百分比,即可得這次被調查的同學的人數,利用A組的人數除以這次被調查的同學的人數即可求得m的值,用總人數減去A、B、E的人數即可求得a+b的值;(2)先求得C組人數所占的百分比,乘以360°即可得扇形統(tǒng)計圖中扇形的圓心角度數;(3)用總人數1000乘以每月零花錢的數額在范圍的人數的百分比即可求得答案.【題目詳解】解:(1)50,28,8;(2)(1-8%-32%-16%-4%)×360°=40%×360°=144°.即扇形統(tǒng)計圖中扇形C的圓心角度數為144°;(3)1000×=560(人).即每月零花錢的數額x元在60≤x<120范圍的人數為560人.【題目點撥】本題考核知識點:統(tǒng)計圖表.解題關鍵點:從統(tǒng)計圖表獲取信息,用樣本估計總體.21、(1)40(2)126°,1(3)940名【解題分析】
(1)根據若A組的頻數比B組小24,且已知兩個組的百分比,據此即可求得總人數,然后根據百分比的意義求得a、b的值;(2)利用360°乘以對應的比例即可求解;(3)利用總人數乘以對應的百分比即可求解.【題目詳解】(1)學生總數是24÷(20%﹣8%)=200(人),則a=200×8%=16,b=200×20%=40;(2)n=360×=126°.C組的人數是:200×25%=1.;(3)樣本D、E兩組的百分數的和為1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估計成績優(yōu)秀的學生有94
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年浙科版九年級歷史上冊階段測試試卷
- 2025年外研銜接版必修2歷史下冊月考試卷
- 二零二五年度高端苗木物流配送服務合同樣本4篇
- 二零二五年度南海區(qū)居住就業(yè)人才住房租賃補貼合同3篇
- 2025年度智能門牌系統(tǒng)研發(fā)與推廣合同4篇
- 2025年度內墻乳膠漆涂裝工程綠色環(huán)保驗收合同4篇
- 2025年度文化傳播派遣工作人員服務合同范本3篇
- 二零二五年度男方婚外情證據收集與訴訟離婚服務合同4篇
- 2025年度文化旅游項目承包合同6篇
- 2025年度派駐企業(yè)行政事務管理合同范本4篇
- 優(yōu)佳學案七年級上冊歷史
- 鋁箔行業(yè)海外分析
- 紀委辦案安全培訓課件
- 超市連鎖行業(yè)招商策劃
- 醫(yī)藥高等數學智慧樹知到課后章節(jié)答案2023年下浙江中醫(yī)藥大學
- 城市道路智慧路燈項目 投標方案(技術標)
- 初中英語-Unit2 My dream job(writing)教學設計學情分析教材分析課后反思
- 【公司利潤質量研究國內外文獻綜述3400字】
- 工行全國地區(qū)碼
- 新疆2022年中考物理試卷及答案
- 地暖工程監(jiān)理實施細則
評論
0/150
提交評論