版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年福建省莆田市第二十五中學(xué)數(shù)學(xué)高三上期末質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.2.已知集合,集合,則A. B.或C. D.3.已知點(m,8)在冪函數(shù)的圖象上,設(shè),則()A.b<a<c B.a(chǎn)<b<c C.b<c<a D.a(chǎn)<c<b4.已知,,,則()A. B.C. D.5.在正方體中,點,,分別為棱,,的中點,給出下列命題:①;②;③平面;④和成角為.正確命題的個數(shù)是()A.0 B.1 C.2 D.36.甲、乙兩名學(xué)生的六次數(shù)學(xué)測驗成績(百分制)的莖葉圖如圖所示.①甲同學(xué)成績的中位數(shù)大于乙同學(xué)成績的中位數(shù);②甲同學(xué)的平均分比乙同學(xué)的平均分高;③甲同學(xué)的平均分比乙同學(xué)的平均分低;④甲同學(xué)成績的方差小于乙同學(xué)成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④7.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或8.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.9.函數(shù)()的圖像可以是()A. B.C. D.10.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.11.已知函數(shù),對任意的,,當(dāng)時,,則下列判斷正確的是()A. B.函數(shù)在上遞增C.函數(shù)的一條對稱軸是 D.函數(shù)的一個對稱中心是12.復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則_________.14.下圖是一個算法流程圖,則輸出的S的值是______.15.記復(fù)數(shù)z=a+bi(i為虛數(shù)單位)的共軛復(fù)數(shù)為,已知z=2+i,則_____.16.已知,滿足,則的展開式中的系數(shù)為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在斜三棱柱中,側(cè)面與側(cè)面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.18.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.19.(12分)已知,函數(shù).(1)若,求的單調(diào)遞增區(qū)間;(2)若,求的值.20.(12分)已知中,,,是上一點.(1)若,求的長;(2)若,,求的值.21.(12分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:試銷價格(元)產(chǎn)品銷量(件)已知變量且有線性負(fù)相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計算結(jié)果是正確的.(1)試判斷誰的計算結(jié)果正確?(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機(jī)抽取個,求“理想數(shù)據(jù)”的個數(shù)為的概率.22.(10分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
求出導(dǎo)函數(shù),由有不等的兩實根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點睛】本題考查導(dǎo)數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.2、C【解析】
由可得,解得或,所以或,又,所以,故選C.3、B【解析】
先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,再利用冪函數(shù)f(x)的單調(diào)性,即可得到a,b,c的大小關(guān)系.【詳解】由冪函數(shù)的定義可知,m﹣1=1,∴m=2,∴點(2,8)在冪函數(shù)f(x)=xn上,∴2n=8,∴n=3,∴冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點睛】本題主要考查了冪函數(shù)的性質(zhì),以及利用函數(shù)的單調(diào)性比較函數(shù)值大小,屬于中檔題.4、C【解析】
利用二倍角公式,和同角三角函數(shù)的商數(shù)關(guān)系式,化簡可得,即可求得結(jié)果.【詳解】,所以,即.故選:C.【點睛】本題考查三角恒等變換中二倍角公式的應(yīng)用和弦化切化簡三角函數(shù),難度較易.5、C【解析】
建立空間直角坐標(biāo)系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數(shù).【詳解】設(shè)正方體邊長為,建立空間直角坐標(biāo)系如下圖所示,,.①,,所以,故①正確.②,,不存在實數(shù)使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設(shè)和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【點睛】本小題主要考查空間線線、線面位置關(guān)系的向量判斷方法,考查運算求解能力,屬于中檔題.6、A【解析】
由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學(xué)成績的中位數(shù)為,乙同學(xué)成績的中位數(shù)為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學(xué)的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).7、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.8、B【解析】
可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識,考查了學(xué)生的運算求解能力.9、B【解析】
根據(jù),可排除,然后采用導(dǎo)數(shù),判斷原函數(shù)的單調(diào)性,可得結(jié)果.【詳解】由題可知:,所以當(dāng)時,,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【點睛】本題考查函數(shù)的圖像,可從以下指標(biāo)進(jìn)行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎(chǔ)題.10、A【解析】
求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點睛】本題考查函數(shù)的切線問題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.11、D【解析】
利用輔助角公式將正弦函數(shù)化簡,然后通過題目已知條件求出函數(shù)的周期,從而得到,即可求出解析式,然后利用函數(shù)的性質(zhì)即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數(shù),對于A,,故A錯誤;對于B,由,解得,故B錯誤;對于C,當(dāng)時,,故C錯誤;對于D,由,故D正確.故選:D【點睛】本題考查了簡單三角恒等變換以及三角函數(shù)的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.12、D【解析】
由復(fù)數(shù)除法運算求出,再寫出其共軛復(fù)數(shù),得共軛復(fù)數(shù)對應(yīng)點的坐標(biāo).得結(jié)論.【詳解】,,對應(yīng)點為,在第四象限.故選:D.【點睛】本題考查復(fù)數(shù)的除法運算,考查共軛復(fù)數(shù)的概念,考查復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)的運算法則是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)交集的定義即可寫出答案?!驹斀狻?,,故填【點睛】本題考查集合的交集,需熟練掌握集合交集的定義,屬于基礎(chǔ)題。14、【解析】
根據(jù)流程圖,運行程序即得.【詳解】第一次運行,;第二次運行,;第三次運行,;第四次運行;所以輸出的S的值是.故答案為:【點睛】本題考查算法流程圖,是基礎(chǔ)題.15、3﹣4i【解析】
計算得到z2=(2+i)2=3+4i,再計算得到答案.【詳解】∵z=2+i,∴z2=(2+i)2=3+4i,則.故答案為:3﹣4i.【點睛】本題考查了復(fù)數(shù)的運算,共軛復(fù)數(shù),意在考查學(xué)生的計算能力.16、1【解析】
根據(jù)二項式定理求出,然后再由二項式定理或多項式的乘法法則結(jié)合組合的知識求得系數(shù).【詳解】由題意,.∴的展開式中的系數(shù)為.故答案為:1.【點睛】本題考查二項式定理,掌握二項式定理的應(yīng)用是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(1)取中點,連,,由等邊三角形三邊合一可知,,即證.(2)以,,為正方向建立空間直角坐標(biāo)系,由向量法可求得平面與平面所成的銳二面角的余弦值.試題解析:(Ⅰ)證明:連,,則和皆為正三角形.取中點,連,,則,,則平面,則(Ⅱ)由(Ⅰ)知,,又,所以.如圖所示,分別以,,為正方向建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,因為,,所以取面的法向量取,則,平面與平面所成的銳二面角的余弦值.18、(1);(2)①可能是2件;②詳見解析【解析】
(1)由一件手工藝品質(zhì)量為B級的情形,并結(jié)合相互獨立事件的概率公式,列式計算即可;(2)①先求得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數(shù),進(jìn)而可求出10件手工藝品中不能外銷的手工藝品的最有可能件數(shù);②分別求出一件手工藝品質(zhì)量為A、B、C、D級的概率,進(jìn)而可列出X的分布列,求出期望即可.【詳解】(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,則,則,其中,.由得,整數(shù)不存在,由得,所以當(dāng)時,,即,由得,所以當(dāng)時,,所以當(dāng)時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由題意可知,一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為:X900600300100P則期望為.【點睛】本題考查相互獨立事件的概率計算,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,考查學(xué)生的計算求解能力,屬于中檔題.19、(1);(2).【解析】
(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可得出函數(shù)的單調(diào)遞增區(qū)間;(2)由得出,并求出的值,利用兩角差的正弦公式可求出的值.【詳解】(1)當(dāng)時,,由,得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2),,,,,,.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵,屬中等題.20、(1)(2)【解析】
(1)運用三角形面積公式求出的長度,然后再運用余弦定理求出的長.(2)運用正弦定理分別表示出和,結(jié)合已知條件計算出結(jié)果.【詳解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【點睛】本題考查了正弦定理、三角形面積公式以及余弦定理,結(jié)合三角形熟練運用各公式是解題關(guān)鍵,此類題目是常考題型,能夠運用公式進(jìn)行邊角互化,需要掌握解題方法.21、(1)乙同學(xué)正確;(2).【解析】
(1)根據(jù)變量且有線性負(fù)相關(guān)關(guān)系判斷甲不正確.根據(jù)回歸直線方程過樣本中心點,判斷出乙正確.(2)由線性回歸方程得到的估計數(shù)據(jù),計算出誤差,求得“理想數(shù)據(jù)”的個數(shù),由此利用古典概型概率計算公式,求得所求概率.【詳解】(1)已知變量具有線性負(fù)相關(guān)關(guān)系,故甲不正確,,代入兩個回歸方程,驗證乙同學(xué)正確,故回歸方程為:(2)由(1)得到的回歸方程,計算估計數(shù)據(jù)如下表:021212由上表可知,“理想數(shù)據(jù)”的個數(shù)為.用列舉法可知,從個不同數(shù)據(jù)里抽出個不同數(shù)據(jù)的方法有種.從符合條件的個不同數(shù)據(jù)中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《材料加工創(chuàng)新》教學(xué)大綱
- 《電池質(zhì)量管理B》教學(xué)大綱
- 五下語文園地七課件
- 教師的安全認(rèn)識教學(xué)課件教學(xué)課件教學(xué)
- 玉溪師范學(xué)院《小學(xué)科學(xué)課程與教學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 100句經(jīng)典勵志詩詞名句
- 文書模板-工作經(jīng)歷證明
- 國貿(mào)實務(wù)教案
- 幕墻工程質(zhì)量通病及其防治措施
- 2024年社會福利收養(yǎng)服務(wù)項目成效分析報告
- 關(guān)于小學(xué)五年級硬筆書法寫字課教案全冊
- 垃圾清運轉(zhuǎn)運車輛安全管理制度
- “西學(xué)中”考試試卷及答案
- 超濾反滲透操作說明書
- 原發(fā)性骨髓纖維化課件
- 六年級上冊數(shù)學(xué)課件-6.1 百分?jǐn)?shù)的認(rèn)識丨蘇教版 (共16張PPT)
- 四年級上冊美術(shù)教案-第13課 多變的大自然 ︳冀美版
- 儒林外史試題含答案
- 節(jié)能減排意識培訓(xùn)課件
- 論高等院校開展工業(yè)設(shè)計專業(yè)的必要性
- 數(shù)據(jù)中心調(diào)研計劃
評論
0/150
提交評論