2024屆江蘇省蘇州市張家港二中學中考數(shù)學最后沖刺模擬試卷含解析_第1頁
2024屆江蘇省蘇州市張家港二中學中考數(shù)學最后沖刺模擬試卷含解析_第2頁
2024屆江蘇省蘇州市張家港二中學中考數(shù)學最后沖刺模擬試卷含解析_第3頁
2024屆江蘇省蘇州市張家港二中學中考數(shù)學最后沖刺模擬試卷含解析_第4頁
2024屆江蘇省蘇州市張家港二中學中考數(shù)學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省蘇州市張家港二中學中考數(shù)學最后沖刺模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.我國的釣魚島面積約為4400000m2,用科學記數(shù)法表示為()A.4.4×106B.44×105C.4×106D.0.44×1072.若點都是反比例函數(shù)的圖象上的點,并且,則下列各式中正確的是(()A. B. C. D.3.如圖,△ABC是⊙O的內接三角形,AD⊥BC于D點,且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.54.老師隨機抽查了學生讀課外書冊數(shù)的情況,繪制成條形圖和不完整的扇形圖,其中條形圖被墨跡遮蓋了一部分,則條形圖中被遮蓋的數(shù)是()A.5 B.9 C.15 D.225.已知M=9x2-4x+3,N=5x2+4x-2,則M與N的大小關系是()A.M>N B.M=N C.M<N D.不能確定6.如圖,在?ABCD中,AB=2,BC=1.以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是()A. B.1 C. D.7.下列圖形不是正方體展開圖的是()A. B.C. D.8.已知線段AB=8cm,點C是直線AB上一點,BC=2cm,若M是AB的中點,N是BC的中點,則線段MN的長度為()A.5cm B.5cm或3cm C.7cm或3cm D.7cm9.已知點M、N在以AB為直徑的圓O上,∠MON=x°,∠MAN=y°,則點(x,y)一定在()A.拋物線上 B.過原點的直線上 C.雙曲線上 D.以上說法都不對10.若a是一元二次方程x2﹣x﹣1=0的一個根,則求代數(shù)式a3﹣2a+1的值時需用到的數(shù)學方法是()A.待定系數(shù)法B.配方C.降次D.消元11.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.12.下列圖形中,周長不是32m的圖形是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△ABC中,點D、E分別在邊AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,則EC的長是_____.14.因式分解______.15.計算的結果等于__________.16.21世紀納米技術將被廣泛應用.納米是長度的度量單位,1納米=0.000000001米,則12納米用科學記數(shù)法表示為_______米.17.點(1,–2)關于坐標原點O的對稱點坐標是_____.18.如圖,在平面直角坐標系中,反比例函數(shù)y=(x>0)的圖象交矩形OABC的邊AB于點D,交BC于點E,且BE=2EC,若四邊形ODBE的面積為8,則k=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為了提高服務質量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?20.(6分)武漢市某中學的一個數(shù)學興趣小組在本校學生中開展主題為“垃圾分類知多少”的專題調查活動,采取隨機抽樣的方式進行問卷調查,問卷詞查的結果分為“非常了解“、“比較了解”、“只聽說過”,“不了解”四個等級,劃分等級后的數(shù)據(jù)整理如下表:等級非常了解比較了解只聽說過不了解頻數(shù)40120364頻率0.2m0.180.02(1)本次問卷調查取樣的樣本容量為,表中的m值為;(2)在扇形圖中完善數(shù)據(jù),寫出等級及其百分比;根據(jù)表中的數(shù)據(jù)計算等級為“非常了解”的頻數(shù)在扇形統(tǒng)計圖所對應的扇形的圓心角的度數(shù);(3)若該校有學生1500人,請根據(jù)調查結果估計這些學生中“比較了解”垃圾分類知識的人數(shù)約為多少?21.(6分)先化簡,再求值:,其中.22.(8分)已知,如圖所示直線y=kx+2(k≠0)與反比例函數(shù)y=(m≠0)分別交于點P,與y軸、x軸分別交于點A和點B,且cos∠ABO=,過P點作x軸的垂線交于點C,連接AC,(1)求一次函數(shù)的解析式.(2)若AC是△PCB的中線,求反比例函數(shù)的關系式.23.(8分)已知關于x的方程.(1)當該方程的一個根為1時,求a的值及該方程的另一根;(2)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.24.(10分)“綠水青山就是金山銀山”,北京市民積極參與義務植樹活動.小武同學為了了解自己小區(qū)300戶家庭在2018年4月份義務植樹的數(shù)量,進行了抽樣調查,隨即抽取了其中30戶家庭,收集的數(shù)據(jù)如下(單位:棵):112323233433433534344545343456(1)對以上數(shù)據(jù)進行整理、描述和分析:①繪制如下的統(tǒng)計圖,請補充完整;②這30戶家庭2018年4月份義務植樹數(shù)量的平均數(shù)是______,眾數(shù)是______;(2)“互聯(lián)網(wǎng)+全民義務植樹”是新時代首都全民義務植樹組織形式和盡責方式的一大創(chuàng)新,2018年首次推出義務植樹網(wǎng)上預約服務,小武同學所調查的這30戶家庭中有7戶家庭采用了網(wǎng)上預約義務植樹這種方式,由此可以估計該小區(qū)采用這種形式的家庭有______戶.25.(10分)如圖,在平面直角坐標系中,直線y=kx+3與軸、軸分別相交于點A、B,并與拋物線的對稱軸交于點,拋物線的頂點是點.(1)求k和b的值;(2)點G是軸上一點,且以點、C、為頂點的三角形與△相似,求點G的坐標;(3)在拋物線上是否存在點E:它關于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標,如果不存在,試說明理由.26.(12分)如圖,在平行四邊形ABCD中,AB<BC.利用尺規(guī)作圖,在AD邊上確定點E,使點E到邊AB,BC的距離相等(不寫作法,保留作圖痕跡);若BC=8,CD=5,則CE=.27.(12分)如圖,點C在線段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求證:CF⊥DE于點F.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】4400000=4.4×1.故選A.點睛:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).2、B【解題分析】

解:根據(jù)題意可得:∴反比例函數(shù)處于二、四象限,則在每個象限內為增函數(shù),且當x<0時y>0,當x>0時,y<0,∴<<.3、A【解題分析】

連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【題目詳解】解:如圖,連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【題目點撥】本題主要考查了圓周角定理、勾股定理,解題的關鍵是掌握輔助線的作法.4、B【解題分析】

條形統(tǒng)計圖是用線段長度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內各個扇形的大小表示各部分數(shù)量占總數(shù)的百分數(shù).通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關系.用整個圓的面積表示總數(shù)(單位1),用圓的扇形面積表示各部分占總數(shù)的百分數(shù).【題目詳解】課外書總人數(shù):6÷25%=24(人),看5冊的人數(shù):24﹣5﹣6﹣4=9(人),故選B.【題目點撥】本題考查了統(tǒng)計圖與概率,熟練掌握條形統(tǒng)計圖與扇形統(tǒng)計圖是解題的關鍵.5、A【解題分析】

若比較M,N的大小關系,只需計算M-N的值即可.【題目詳解】解:∵M=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故選A.【題目點撥】本題的主要考查了比較代數(shù)式的大小,可以讓兩者相減再分析情況.6、B【解題分析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.7、B【解題分析】

由平面圖形的折疊及正方體的展開圖解題.【題目詳解】A、C、D經(jīng)過折疊均能圍成正方體,B折疊后上邊沒有面,不能折成正方體.故選B.【題目點撥】此題主要考查平面圖形的折疊及正方體的展開圖,熟練掌握,即可解題.8、B【解題分析】(1)如圖1,當點C在點A和點B之間時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如圖2,當點C在點B的右側時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.綜上所述,線段MN的長度為5cm或3cm.故選B.點睛:解本題時,由于題目中告訴的是點C在直線AB上,因此根據(jù)題目中所告訴的AB和BC的大小關系要分點C在線段AB上和點C在線段AB的延長線上兩種情況分析解答,不要忽略了其中任何一種.9、B【解題分析】

由圓周角定理得出∠MON與∠MAN的關系,從而得出x與y的關系式,進而可得出答案.【題目詳解】∵∠MON與∠MAN分別是弧MN所對的圓心角與圓周角,∴∠MAN=∠MON,∴,∴點(x,y)一定在過原點的直線上.故選B.【題目點撥】本題考查了圓周角定理及正比例函數(shù)圖像的性質,熟練掌握圓周角定理是解答本題的關鍵.10、C【解題分析】

根據(jù)一元二次方程的解的定義即可求出答案.【題目詳解】由題意可知:a2-a-1=0,

∴a2-a=1,

或a2-1=a

∴a3-2a+1

=a3-a-a+1

=a(a2-1)-(a-1)

=a2-a+1

=1+1

=2

故選:C.【題目點撥】本題考查了一元二次方程的解,解題的關鍵是正確理解一元二次方程的解的定義.11、A【解題分析】A.是軸對稱圖形不是中心對稱圖形,正確;B.是軸對稱圖形也是中心對稱圖形,錯誤;C.是中心對稱圖形不是軸對稱圖形,錯誤;D.是軸對稱圖形也是中心對稱圖形,錯誤,故選A.【題目點撥】本題考查軸對稱圖形與中心對稱圖形,正確地識別是解題的關鍵.12、B【解題分析】

根據(jù)所給圖形,分別計算出它們的周長,然后判斷各選項即可.【題目詳解】A.L=(6+10)×2=32,其周長為32.B.該平行四邊形的一邊長為10,另一邊長大于6,故其周長大于32.C.L=(6+10)×2=32,其周長為32.D.L=(6+10)×2=32,其周長為32.采用排除法即可選出B故選B.【題目點撥】此題考查多邊形的周長,解題在于掌握計算公式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】

由△ABC中,點D、E分別在邊AB、BC上,DE∥AC,根據(jù)平行線分線段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【題目詳解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=﹣3=.故答案為.【題目點撥】考查了平行線分線段成比例定理,解題時注意:平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.14、a(3a+1)【解題分析】3a2+a=a(3a+1),故答案為a(3a+1).15、【解題分析】

根據(jù)完全平方公式進行展開,然后再進行同類項合并即可.【題目詳解】解:.故填.【題目點撥】主要考查的是完全平方公式及二次根式的混合運算,注意最終結果要化成最簡二次根式的形式.16、1.2×10﹣1.【解題分析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10?n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【題目詳解】解:12納米=12×0.000000001米=1.2×10?1米.故答案為1.2×10?1.【題目點撥】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10?n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.17、(-1,2)【解題分析】

根據(jù)兩個點關于原點對稱時,它們的坐標符號相反可得答案.【題目詳解】A(1,-2)關于原點O的對稱點的坐標是(-1,2),

故答案為:(-1,2).【題目點撥】此題主要考查了關于原點對稱的點的坐標,關鍵是掌握點的坐標的變化規(guī)律.18、1【解題分析】

連接OB,由矩形的性質和已知條件得出△OBD的面積=△OBE的面積=四邊形ODBE的面積,再求出△OCE的面積為2,即可得出k的值.【題目詳解】連接OB,如圖所示:∵四邊形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面積=△OBC的面積,∵D、E在反比例函數(shù)y=(x>0)的圖象上,∴△OAD的面積=△OCE的面積,∴△OBD的面積=△OBE的面積=四邊形ODBE的面積=1,∵BE=2EC,∴△OCE的面積=△OBE的面積=2,∴k=1.故答案為:1.【題目點撥】本題考查了反比例函數(shù)的系數(shù)k的幾何意義:在反比例函數(shù)y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)甲、乙兩種套房每套提升費用為25、1萬元;(2)甲種套房提升2套,乙種套房提升30套時,y最小值為2090萬元.【解題分析】

(1)設甲種套房每套提升費用為x萬元,根據(jù)題意建立方程求出其解即可;(2)設甲種套房提升m套,那么乙種套房提升(80-m)套,根據(jù)條件建立不等式組求出其解就可以求出提升方案,再表示出總費用與m之間的函數(shù)關系式,根據(jù)一次函數(shù)的性質就可以求出結論.【題目詳解】(1)設乙種套房提升費用為x萬元,則甲種套房提升費用為(x﹣3)萬元,則,解得x=1.經(jīng)檢驗:x=1是分式方程的解,答:甲、乙兩種套房每套提升費用為25、1萬元;(2)設甲種套房提升a套,則乙種套房提升(80﹣a)套,則2090≤25a+1(80﹣a)≤2096,解得48≤a≤2.∴共3種方案,分別為:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升31套,方案三:甲種套房提升2套,乙種套房提升30套.設提升兩種套房所需要的費用為y萬元,則y=25a+1(80﹣a)=﹣3a+2240,∵k=﹣3,∴當a取最大值2時,即方案三:甲種套房提升2套,乙種套房提升30套時,y最小值為2090萬元.【題目點撥】本題考查了一次函數(shù)的性質的運用,列分式方程解實際問題的運用,列一元一次不等式組解實際問題的運用.解答時建立方程求出甲,乙兩種套房每套提升費用是關鍵,是解答第二問的必要過程.20、(1)200;0.6(2)非常了解20%,比較了解60%;72°;(3)900人【解題分析】

(1)根據(jù)非常了解的頻數(shù)與頻率即可求出本次問卷調查取樣的樣本容量,用1減去各等級的頻率即可得到m值;(2)根據(jù)非常了解的頻率、比較了解的頻率即可求出其百分比,與非常了解的圓心角度數(shù);(3)用全校人數(shù)乘以非常了解的頻率即可.【題目詳解】解:(1)本次問卷調查取樣的樣本容量為40÷0.2=200;m=1-0.2-0.18-0.02=0.6(2)非常了解20%,比較了解60%;非常了解的圓心角度數(shù):360°×20%=72°(3)1500×60%=900(人)答:“比較了解”垃圾分類知識的人數(shù)約為900人.【題目點撥】此題主要考查扇形統(tǒng)計圖的應用,解題的關鍵是根據(jù)頻數(shù)與頻率求出調查樣本的容量.21、-1,-9.【解題分析】

先去括號,再合并同類項;最后把x=-2代入即可.【題目詳解】原式=,當x=-2時,原式=-8-1=-9.【題目點撥】本題考查了整式的混合運算及化簡求值,關鍵是先按運算順序把整式化簡,再把對應字母的值代入求整式的值.22、(2)y=2x+2;(2)y=.【解題分析】

(2)由cos∠ABO=,可得到tan∠ABO=2,從而可得到k=2;(2)先求得A、B的坐標,然后依據(jù)中點坐標公式可求得點P的坐標,將點P的坐標代入反比例函數(shù)的解析式可求得m的值.【題目詳解】(2)∵cos∠ABO=,∴tan∠ABO=2.又∵OA=2∴OB=2.B(-2,0)代入y=kx+2得k=2∴一次函數(shù)的解析式為y=2x+2.(2)當x=0時,y=2,∴A(0,2).當y=0時,2x+2=0,解得:x=﹣2.∴B(﹣2,0).∵AC是△PCB的中線,∴P(2,4).∴m=xy=2×4=4,∴反例函數(shù)的解析式為y=.【題目點撥】本題主要考查的是反比例函數(shù)與一次函數(shù)的交點、銳角三角函數(shù)的定義、中點坐標公式的應用,確定一次函數(shù)系數(shù)k=tan∠ABO是解題的關鍵.23、(1),;(2)證明見解析.【解題分析】試題分析:(1)根據(jù)一元二次方程根與系數(shù)的關系列方程組求解即可.(2)要證方程都有兩個不相等的實數(shù)根,只要證明根的判別式大于0即可.試題解析:(1)設方程的另一根為x1,∵該方程的一個根為1,∴.解得.∴a的值為,該方程的另一根為.(2)∵,∴不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.考點:1.一元二次方程根與系數(shù)的關系;2.一元二次方程根根的判別式;3.配方法的應用.24、(1)3.4棵、3棵;(2)1.【解題分析】

(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,據(jù)此補全圖形可得;②根據(jù)平均數(shù)和眾數(shù)的定義求解可得;(2)用總戶數(shù)乘以樣本中采用了網(wǎng)上預約義務植樹這種方式的戶數(shù)所占比例可得.【題目詳解】解:(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,補全圖形如下:②這30戶家庭2018年4月份義務植樹數(shù)量的平均數(shù)是(棵),眾數(shù)為3棵,故答案為:3.4棵、3棵;(2)估計該小區(qū)采用這種形式的家庭有戶,故答案為:1.【題目點撥】此題考查條形統(tǒng)計圖,加權平均數(shù),眾數(shù),解題關鍵在于利用樣本估計總體.25、(1)k=-,b=1;(1)(0,1)和【解題分析】分析:(1)由直線經(jīng)過點,可得.由拋物線的對稱軸是直線,可得,進而得到A、B、D的坐標,然后分兩種情況討論即可;(3)設E(a,),E關于直線AB的對稱點E′為(0,b),EE′與AB的交點為P.則EE′⊥AB,P為EE′的中點,列方程組,求解即可得到a的值,進而得到答案.詳解:(1)由直線經(jīng)過點,可得.由拋物線的對稱軸是直線,可得.∵直線與x軸、y軸分別相交于點、,∴點的坐標是,點的坐標是.∵拋物線的頂點是點,∴點的坐標是.∵點是軸上一點,∴設點的坐標是.∵△BCG與△BCD相似,又由題意知,,∴△BCG與△相似有兩種可能情況:①如果,那么,解得,∴點的坐標是.②

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論