上海市文來中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第1頁
上海市文來中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第2頁
上海市文來中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第3頁
上海市文來中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第4頁
上海市文來中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市文來中學2024年中考數(shù)學最后沖刺模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,過點A(4,5)分別作x軸、y軸的平行線,交直線y=﹣x+6于B、C兩點,若函數(shù)y=(x>0)的圖象△ABC的邊有公共點,則k的取值范圍是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤202.如圖是本地區(qū)一種產品30天的銷售圖象,圖①是產品日銷售量y(單位:件)與時間t(單位;天)的函數(shù)關系,圖②是一件產品的銷售利潤z(單位:元)與時間t(單位:天)的函數(shù)關系,已知日銷售利潤=日銷售量×一件產品的銷售利潤,下列結論錯誤的是()A.第24天的銷售量為200件 B.第10天銷售一件產品的利潤是15元C.第12天與第30天這兩天的日銷售利潤相等 D.第27天的日銷售利潤是875元3.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為()A.1 B.2 C.3 D.44.世界上最小的鳥是生活在古巴的吸蜜蜂鳥,它的質量約為0.056盎司.將0.056用科學記數(shù)法表示為()A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣15.如圖,菱形OABC的頂點C的坐標為(3,4),頂點A在x軸的正半軸上.反比例函數(shù)(x>0)的圖象經過頂點B,則k的值為A.12 B.20 C.24 D.326.已知代數(shù)式x+2y的值是5,則代數(shù)式2x+4y+1的值是()A.6

B.7C.11D.127.對于數(shù)據:6,3,4,7,6,0,1.下列判斷中正確的是()A.這組數(shù)據的平均數(shù)是6,中位數(shù)是6 B.這組數(shù)據的平均數(shù)是6,中位數(shù)是7C.這組數(shù)據的平均數(shù)是5,中位數(shù)是6 D.這組數(shù)據的平均數(shù)是5,中位數(shù)是78.如圖,正六邊形ABCDEF內接于⊙O,半徑為4,則這個正六邊形的邊心距OM的長為()A.2 B.2 C. D.49.﹣的絕對值是()A.﹣ B.﹣ C. D.10.若關于的一元二次方程有兩個不相等的實數(shù)根,則一次函數(shù)的圖象可能是:A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AO、AD的中點,若AB=6cm,BC=8cm,則EF=_____cm.12.如圖,在矩形ABCD中,AB=4,BC=5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG為_____.13.因式分解:-2x2y+8xy-6y=__________.14.觀察下列圖形:它們是按一定的規(guī)律排列的,依照此規(guī)律,第n個圖形共有___個★.15.有一組數(shù)據:3,5,5,6,7,這組數(shù)據的眾數(shù)為_____.16.分解因式:=_______.17.一個正方形AOBC各頂點的坐標分別為A(0,3),O(0,0),B(3,0),C(3,3).若以原點為位似中心,將這個正方形的邊長縮小為原來的,則新正方形的中心的坐標為_____.三、解答題(共7小題,滿分69分)18.(10分)已知關于x的方程.(1)當該方程的一個根為1時,求a的值及該方程的另一根;(2)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.19.(5分)如圖,網格的每個小正方形邊長均為1,每個小正方形的頂點稱為格點.已知和的頂點都在格點上,線段的中點為.(1)以點為旋轉中心,分別畫出把順時針旋轉,后的,;(2)利用(1)變換后所形成的圖案,解答下列問題:①直接寫出四邊形,四邊形的形狀;②直接寫出的值;③設的三邊,,,請證明勾股定理.20.(8分)如圖,AB∥CD,∠1=∠2,求證:AM∥CN21.(10分)某快餐店試銷某種套餐,試銷一段時間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費用為600元(不含套餐成本).若每份套餐售價不超過10元,每天可銷售400份;若每份套餐售價超過10元,每提高1元,每天的銷售量就減少40份.為了便于結算,每份套餐的售價(元)取整數(shù),用(元)表示該店每天的利潤.若每份套餐售價不超過10元.①試寫出與的函數(shù)關系式;②若要使該店每天的利潤不少于800元,則每份套餐的售價應不低于多少元?該店把每份套餐的售價提高到10元以上,每天的利潤能否達到1560元?若能,求出每份套餐的售價應定為多少元時,既能保證利潤又能吸引顧客?若不能,請說明理由.22.(10分)解不等式組:,并寫出它的所有整數(shù)解.23.(12分)化簡分式,并從0、1、2、3這四個數(shù)中取一個合適的數(shù)作為x的值代入求值.24.(14分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.(1)求y與x之間的函數(shù)關系式;(2)直接寫出當x>0時,不等式x+b>的解集;(3)若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】若反比例函數(shù)與三角形交于A(4,5),則k=20;若反比例函數(shù)與三角形交于C(4,2),則k=8;若反比例函數(shù)與三角形交于B(1,5),則k=5.故.故選A.2、C【解題分析】試題解析:A、根據圖①可得第24天的銷售量為200件,故正確;B、設當0≤t≤20,一件產品的銷售利潤z(單位:元)與時間t(單位:天)的函數(shù)關系為z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=-x+25,當x=10時,y=-10+25=15,故正確;C、當0≤t≤24時,設產品日銷售量y(單位:件)與時間t(單位;天)的函數(shù)關系為y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=t+100,當t=12時,y=150,z=-12+25=13,∴第12天的日銷售利潤為;150×13=1950(元),第30天的日銷售利潤為;150×5=750(元),750≠1950,故C錯誤;D、第30天的日銷售利潤為;150×5=750(元),故正確.故選C3、C【解題分析】

∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故選C考點:相似三角形的判定與性質.4、B【解題分析】

0.056用科學記數(shù)法表示為:0.056=,故選B.5、D【解題分析】

如圖,過點C作CD⊥x軸于點D,∵點C的坐標為(3,4),∴OD=3,CD=4.∴根據勾股定理,得:OC=5.∵四邊形OABC是菱形,∴點B的坐標為(8,4).∵點B在反比例函數(shù)(x>0)的圖象上,∴.故選D.6、C【解題分析】

根據題意得出x+2y=5,將所求式子前兩項提取2變形后,把x+2y=5代入計算即可求出值.【題目詳解】∵x+2y=5,∴2x+4y=10,則2x+4y+1=10+1=1.故選C.【題目點撥】此題考查了代數(shù)式求值,利用了整體代入的思想,是一道基本題型.7、C【解題分析】

根據題目中的數(shù)據可以按照從小到大的順序排列,從而可以求得這組數(shù)據的平均數(shù)和中位數(shù).【題目詳解】對于數(shù)據:6,3,4,7,6,0,1,這組數(shù)據按照從小到大排列是:0,3,4,6,6,7,1,這組數(shù)據的平均數(shù)是:中位數(shù)是6,故選C.【題目點撥】本題考查了平均數(shù)、中位數(shù)的求法,解決本題的關鍵是明確它們的意義才會計算,求平均數(shù)是用一組數(shù)據的和除以這組數(shù)據的個數(shù);中位數(shù)的求法分兩種情況:把一組數(shù)據從小到大排成一列,正中間如果是一個數(shù),這個數(shù)就是中位數(shù),如果正中間是兩個數(shù),那中位數(shù)是這兩個數(shù)的平均數(shù).8、B【解題分析】分析:連接OC、OB,證出△BOC是等邊三角形,根據銳角三角函數(shù)的定義求解即可.詳解:如圖所示,連接OC、OB

∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點睛:考查的是正六邊形的性質、等邊三角形的判定與性質、三角函數(shù);熟練掌握正六邊形的性質,由三角函數(shù)求出OM是解決問題的關鍵.9、C【解題分析】

根據負數(shù)的絕對值是它的相反數(shù),可得答案.【題目詳解】│-│=,A錯誤;│-│=,B錯誤;││=,D錯誤;││=,故選C.【題目點撥】本題考查了絕對值,解題的關鍵是掌握絕對值的概念進行解題.10、B【解題分析】

由方程有兩個不相等的實數(shù)根,可得,解得,即異號,當時,一次函數(shù)的圖象過一三四象限,當時,一次函數(shù)的圖象過一二四象限,故答案選B.二、填空題(共7小題,每小題3分,滿分21分)11、2.1【解題分析】

根據勾股定理求出AC,根據矩形性質得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據三角形中位線求出即可.【題目詳解】∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:BD=AC==10(cm),∴DO=1cm,∵點E、F分別是AO、AD的中點,∴EF=OD=2.1cm,故答案為2.1.【點評】本題考查了勾股定理,矩形性質,三角形中位線的應用,熟練掌握相關性質及定理是解題的關鍵.12、【解題分析】

如圖,作輔助線,首先證明△EFG≌△ECG,得到FG=CG(設為x),∠FEG=∠CEG;同理可證AF=AD=5,∠FEA=∠DEA,進而證明△AEG為直角三角形,運用相似三角形的性質即可解決問題.【題目詳解】連接EG;∵四邊形ABCD為矩形,∴∠D=∠C=90°,DC=AB=4;由題意得:EF=DE=EC=2,∠EFG=∠D=90°;在Rt△EFG與Rt△ECG中,,∴Rt△EFG≌Rt△ECG(HL),∴FG=CG(設為x),∠FEG=∠CEG;同理可證:AF=AD=5,∠FEA=∠DEA,∴∠AEG=×180°=90°,而EF⊥AG,可得△EFG∽△AFE,∴∴22=5?x,∴x=,∴CG=,故答案為:.【題目點撥】此題考查矩形的性質,翻折變換的性質,以考查全等三角形的性質及其應用、射影定理等幾何知識點為核心構造而成;對綜合的分析問題解決問題的能力提出了一定的要求.13、-2y(x-1)(x-3)【解題分析】分析:提取公因式法和十字相乘法相結合因式分解即可.詳解:原式故答案為點睛:本題主要考查因式分解,熟練掌握提取公因式法和十字相乘法是解題的關鍵.分解一定要徹底.14、【解題分析】

分別求出第1個、第2個、第3個、第4個圖形中★的個數(shù),得到第5個圖形中★的個數(shù),進而找到規(guī)律,得出第n個圖形中★的個數(shù),即可求解.【題目詳解】第1個圖形中有1+3×1=4個★,

第2個圖形中有1+3×2=7個★,

第3個圖形中有1+3×3=10個★,

第4個圖形中有1+3×4=13個★,

第5個圖形中有1+3×5=16個★,

第n個圖形中有1+3×n=(3n+1)個★.故答案是:1+3n.【題目點撥】考查了規(guī)律型:圖形的變化類;根據圖形中變化的量和n的關系與不變的量得到圖形中★的個數(shù)與n的關系是解決本題的關鍵.15、1【解題分析】

根據眾數(shù)的概念進行求解即可得.【題目詳解】在數(shù)據3,1,1,6,7中1出現(xiàn)次數(shù)最多,所以這組數(shù)據的眾數(shù)為1,故答案為:1.【題目點撥】本題考查了眾數(shù)的概念,熟知一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據叫做眾數(shù)是解題的關鍵.16、.【解題分析】

將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.【題目詳解】直接提取公因式即可:.17、(,)或(﹣,﹣).【解題分析】

分點A、B、C的對應點在第一象限和第三象限兩種情況,根據位似變換和正方形的性質解答可得.【題目詳解】如圖,①當點A、B、C的對應點在第一象限時,由位似比為1:2知點A′(0,)、B′(,0)、C′(,),∴該正方形的中心點的P的坐標為(,);②當點A、B、C的對應點在第三象限時,由位似比為1:2知點A″(0,-)、B″(-,0)、C″(-,-),∴此時新正方形的中心點Q的坐標為(-,-),故答案為(,)或(-,-).【題目點撥】本題主要考查位似變換,解題的關鍵是熟練掌握位似變換的性質和正方形的性質.三、解答題(共7小題,滿分69分)18、(1),;(2)證明見解析.【解題分析】試題分析:(1)根據一元二次方程根與系數(shù)的關系列方程組求解即可.(2)要證方程都有兩個不相等的實數(shù)根,只要證明根的判別式大于0即可.試題解析:(1)設方程的另一根為x1,∵該方程的一個根為1,∴.解得.∴a的值為,該方程的另一根為.(2)∵,∴不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.考點:1.一元二次方程根與系數(shù)的關系;2.一元二次方程根根的判別式;3.配方法的應用.19、(1)見解析;(2)①正方形;②;③見解析.【解題分析】

(1)根據旋轉作圖的方法進行作圖即可;(2)①根據旋轉的性質可證AC=BC1=B1C2=B2C3,從而證出四邊形CC1C2C3是菱形,再根據有一個角是直角的菱形是正方形即可作出判斷,同理可判斷四邊形ABB1B2是正方形;②根據相似圖形的面積之比等相似比的平方即可得到結果;③用兩種不同的方法計算大正方形的面積化簡即可得到勾股定理.【題目詳解】(1)如圖,(2)①四邊形CC1C2C3和四邊形ABB1B2是正方形.理由如下:∵△ABC≌△BB1C1,∴AC=BC1,BC==B1C1,AB=BB1.再根據旋轉的性質可得:BC1=B1C2=B2C3,B2C1=B2C2=AC3,BB1=B1B2=AB2.∴CC1=C1C2=C2C3=CC3AB=BB1=B1B2=AB2∴四邊形CC1C2C3和四邊形ABB1B2是菱形.∵∠C=∠ABB1=90°,∴四邊形CC1C2C3和四邊形ABB1B2是正方形.②∵四邊形CC1C2C3和四邊形ABB1B2是正方形,∴四邊形CC1C2C3∽四邊形ABB1B2.∴=∵AB=,CC1=,∴==.③四邊形CC1C2C3的面積==,四邊形CC1C2C3的面積=4△ABC的面積+四邊形ABB1B2的面積=4+=∴=,化簡得:=.【題目點撥】本題考查了旋轉作圖和旋轉的性質,正方形的判定和性質,勾股定理,掌握相關知識是解題的關鍵.20、詳見解析.【解題分析】

只要證明∠EAM=∠ECN,根據同位角相等兩直線平行即可證明.【題目詳解】證明:∵AB∥CD,∴∠EAB=∠ECD,∵∠1=∠2,∴∠EAM=∠ECN,∴AM∥CN.【題目點撥】本題考查平行線的判定和性質,解題的關鍵是熟練掌握平行線的性質和判定,屬于中考基礎題.21、(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能,11元.【解題分析】

(1)、根據利潤=(售價-進價)×數(shù)量-固定支出列出函數(shù)表達式;(2)、根據題意得出不等式,從而得出答案;(2)、根據題意得出函數(shù)關系式,然后將y=1560代入函數(shù)解析式,從而求出x的值得出答案.【題目詳解】解:(1)①y=400(x﹣5)﹣2.(5<x≤10),②依題意得:400(x﹣5)﹣2≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售價x(元)取整數(shù),∴每份套餐的售價應不低于9元.(2)依題意可知:每份套餐售價提高到10元以上時,y=(x﹣5)[400﹣40(x﹣10)]﹣2,當y=1560時,(x﹣5)[400﹣40(x﹣10)]﹣2=1560,解得:x1=11,x2=14,為了保證凈收入又能吸引顧客,應取x1=11,即x2=14不符合題意.故該套餐售價應定為11元.【題目點撥】本題主要考查的是一次函數(shù)和二次函數(shù)的實際應用問題,屬于中等難度的題型.理解題意,列出關系式是解決這個問題的關鍵.22、﹣2,﹣1,0,1,2;【解題分析】

首先解每個不等式,兩個不等式的解集的公共部分就是不等式組的解集;再確定解集中的所有整

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論