版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省衡陽一中2023年高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知函數(shù)是定義在上的奇函數(shù),當時,,則當時,的表達式是()A. B.C. D.2.的圖像是端點為且分別過和兩點的兩條射線,如圖所示,則的解集為A.B.C.D.3.已知冪函數(shù)f(x)=xa的圖象經(jīng)過點(2,),則函數(shù)f(x)為()A.奇函數(shù)且在上單調(diào)遞增 B.偶函數(shù)且在上單調(diào)遞減C.非奇非偶函數(shù)且在上單調(diào)遞增 D.非奇非偶函數(shù)且在上單調(diào)遞減4.如圖,邊長為的正方形是一個水平放置的平面圖形的直觀圖,則圖形的面積是A. B.C. D.5.已知,若,則x的取值范圍為()A. B.C. D.6.滿足的集合的個數(shù)為()A. B.C. D.7.若,則a,b,c的大小關(guān)系是()A. B.C. D.8.已知集合,集合,則A∩B=()A. B.C. D.9.已知正實數(shù)x,y,z,滿足,則()A. B.C. D.10.如圖,在平面內(nèi)放置兩個相同的直角三角板,其中,且三點共線,則下列結(jié)論不成立的是A. B.C.與共線 D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.函數(shù)是冪函數(shù)且為偶函數(shù),則m的值為_________12.已知函數(shù),則使函數(shù)有零點的實數(shù)的取值范圍是____________13.已知,,與的夾角為60°,則________.14.如圖,已知△和△有一條邊在同一條直線上,,,,在邊上有個不同的點F,G,則的值為______15.已知直線經(jīng)過點,且與直線平行,則直線的方程為__________三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.某校手工愛好者社團出售自制的工藝品,每件的售價在20元到40元之間時,其銷售量(件)與售價(元/件)之間滿足一次函數(shù)關(guān)系,部分對應(yīng)數(shù)據(jù)如下表所示.(元/件)20212223……3940(件)440420400380……6040(1)求此一次函數(shù)的解析式;(2)若每件工藝品的成本是20元,在不考慮其他因素的情況下,每件工藝品的售價是多少時,利潤最大?最大利潤是多少?17.已知正項數(shù)列的前項和為,且和滿足:(1)求的通項公式;(2)設(shè),求的前項和;(3)在(2)的條件下,對任意,都成立,求整數(shù)的最大值18.計劃建造一個室內(nèi)面積為1500平方米的矩形溫室大棚,并在溫室大棚內(nèi)建兩個大小、形狀完全相同的矩形養(yǎng)殖池,其中沿溫室大棚前、后、左、右內(nèi)墻各保留米寬的通道,兩養(yǎng)殖池之間保留2米寬的通道.設(shè)溫室的一邊長度為米,兩個養(yǎng)殖池的總面積為平方米,如圖所示:(1)將表示為的函數(shù),并寫出定義域;(2)當取何值時,取最大值?最大值是多少?19.已知二次函數(shù).(1)求的對稱軸;(2)若,求的值及的最值.20.設(shè),函數(shù).(1)當時,寫出的單調(diào)區(qū)間(不用寫出求解過程);(2)若有兩個零點,求的取值范圍.21.已知函數(shù),,.(1)若,求函數(shù)的解析式;(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并用函數(shù)單調(diào)性定義證明.
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、D【解析】利用函數(shù)的奇偶性求在上的表達式.【詳解】令,則,故,又是定義在上的奇函數(shù),∴.故選:D.2、D【解析】作出g(x)=圖象,它與f(x)的圖象交點為和,由圖象可得3、C【解析】根據(jù)已知求出a=,從而函數(shù)f(x)=,由此得到函數(shù)f(x)是非奇非偶函數(shù)且在(0,+∞)上單調(diào)遞增【詳解】∵冪函數(shù)f(x)=xa的圖象經(jīng)過點(2,),∴2a=,解得a=,∴函數(shù)f(x)=,∴函數(shù)f(x)是非奇非偶函數(shù)且在(0,+∞)上單調(diào)遞增故選C【點睛】本題考查命題真假的判斷,考查冪函數(shù)的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題4、D【解析】根據(jù)直觀圖畫出原圖可得答案.【詳解】由直觀圖畫出原圖,如圖,因為,所以,,則圖形的面積是.故選:D5、C【解析】首先判斷函數(shù)的單調(diào)性和定義域,再解抽象不等式.【詳解】函數(shù)的定義域需滿足,解得:,并且在區(qū)間上,函數(shù)單調(diào)遞增,且,所以,即,解得:或.故選:C【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是判斷函數(shù)的單調(diào)性和定義域,尤其是容易忽略函數(shù)的定義域.6、B【解析】列舉出符合條件的集合,即可得出答案.【詳解】滿足的集合有:、、.因此,滿足的集合的個數(shù)為.故選:B.【點睛】本題考查符合條件的集合個數(shù)的計算,只需列舉出符合條件的集合即可,考查分析問題和解決問題的能力,屬于基礎(chǔ)題.7、A【解析】根據(jù)題意,以及指數(shù)和對數(shù)的函數(shù)的單調(diào)性,來確定a,b,c的大小關(guān)系.【詳解】解:是增函數(shù),是增函數(shù).,又,【點睛】本題考查三個數(shù)的大小的求法,考查指數(shù)函數(shù)和對數(shù)函數(shù)性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.根據(jù)題意,構(gòu)造合適的對數(shù)函數(shù)和指數(shù)函數(shù),利用指數(shù)對數(shù)函數(shù)的單調(diào)性判定的范圍是關(guān)鍵.8、B【解析】化簡集合B,再求集合A,B的交集即可.【詳解】∵集合,集合,∴.故選:B.9、A【解析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的圖像比較大小即可.【詳解】令,則,,,由圖可知.10、D【解析】設(shè)BC=DE=m,∵∠A=30°,且B,C,D三點共線,則CD═AB=m,AC=EC=2m,∴∠ACB=∠CED=60°,∠ACE=90°,,故A、B、C成立;而,,即不成立,故選D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、【解析】由函數(shù)是冪函數(shù),則,解出的值,再驗證函數(shù)是否為偶函數(shù),得出答案.【詳解】由函數(shù)是冪函數(shù),則,得或當時,函數(shù)不是偶函數(shù),所以舍去.當時,函數(shù)是偶函數(shù),滿足條件.故答案為:【點睛】本題考查冪函數(shù)的概念和冪函數(shù)的奇偶性,屬于基礎(chǔ)題.12、【解析】令,進而作出的圖象,然后通過數(shù)形結(jié)合求得答案.【詳解】令,現(xiàn)作出的圖象,如圖:于是,當時,圖象有交點,即函數(shù)有零點.故答案為:.13、10【解析】由數(shù)量積的定義直接計算.【詳解】.故答案為:10.14、16【解析】由題意易知:△和△為全等的等腰直角三角形,斜邊長為,,故答案為16點睛:平面向量數(shù)量積類型及求法(1)求平面向量數(shù)量積有三種方法:一是夾角公式a·b=|a||b|cosθ;二是坐標公式a·b=x1x2+y1y2;三是利用數(shù)量積的幾何意義.本題就是利用幾何意義處理的.(2)求較復(fù)雜的平面向量數(shù)量積的運算時,可先利用平面向量數(shù)量積的運算律或相關(guān)公式進行化簡.15、【解析】設(shè)與直線平行的直線,將點代入得.即所求方程為三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1)(2)每件工藝品的售價為31元時,利潤最大,最大利潤為2420元【解析】(1)設(shè),任取兩級數(shù)據(jù)代入求得參數(shù)值得解析式;(2)由(1)中關(guān)系式得出利潤與的關(guān)系,由二次函數(shù)的性質(zhì)得最大值【小問1詳解】設(shè),不妨選擇兩組數(shù)據(jù),代入,可得解得∴一次函數(shù)的解析式為【小問2詳解】設(shè)利潤為元,由題意可得,∴當時,,∴每件工藝品的售價為31元時,利潤最大,最大利潤為2420元17、(1);(2);(3)7.【解析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)?(an-an-1-2)=0.從而能求出{an}的通項公式;(2)由(1)知,由此利用裂項求和法能求出Tn(3)由(2)知從而得到.由此能求出任意n∈N*,Tn都成立的整數(shù)m的最大值【詳解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)2(n≥2),②①-②得4(Sn-Sn-1)=(an+1)2-(an-1+1)2∴4an=(an+1)2-(an-1+1)2化簡得(an+an-1)?(an-an-1-2)=0∵an>0,∴an-an-1=2(n≥2)∴{an}是以1為首項,2為公差等差數(shù)列∴an=1+(n-1)?2=2n-1(2)∴(3)由(2)知,∴數(shù)列{Tn}是遞增數(shù)列∴∴∴整數(shù)m的最大值是7【點睛】本題考查數(shù)列的通項公式的求法,考查裂項相消法求數(shù)列的前n項和,解題時要認真審題,仔細解答,注意等價轉(zhuǎn)化思想的合理運用18、(1),定義域為;(2)當取30時,取最大值,最大值是1215.【解析】(1)應(yīng)用矩形的面積公式寫出表示為的函數(shù),并寫出定義域.(2)利用基本不等式求的最大值,并確定對應(yīng)值.【小問1詳解】依題意得:溫室的另一邊長為米,則養(yǎng)殖池的總面積,因為,解得∴定義域為【小問2詳解】由(1),,又,所以,當且僅當,即時上式等號成立,所以.當時,.當x為30時,y取最大值為1215.19、(1)(2)的值是,最小值是,無最大值【解析】(1)根據(jù)二次函數(shù)的對稱軸公式,即可得到結(jié)果;(2)由,可求出的值,再根據(jù)二次函數(shù)的開口和對稱軸,即可求出最值.【小問1詳解】解:因為二次函數(shù),所以對稱軸【小問2詳解】解:因為,所以.所以.所以.因為,所以開口向上,又對稱軸為,所以最小值為,無最大值.20、(1)增區(qū)間是,減區(qū)間是;(2)【解析】(1)根據(jù)函數(shù)的圖象即可寫出;(2)根據(jù)函數(shù)零點的定義結(jié)合分類討論思想即可求出小問1詳解】的增區(qū)間是,減區(qū)間是【小問2詳解】由得;由得或,當時,得或,所以1是的零點,①當時,則都不是的零點,故只有一個零點;②當時,即時,為使有兩個零點,則,解得,此時的兩個零點為.當時,得,所以1不是的零點,為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度文化用品代理商銷售合同范本4篇
- 2025年度環(huán)保產(chǎn)業(yè)投資13合同商定綠色投資協(xié)議3篇
- 2025年度智能大棚建筑與遠程監(jiān)控系統(tǒng)合同4篇
- 2025年度玻璃鋼化糞池行業(yè)技術(shù)標準制定與實施合同3篇
- 2025年度智能停車管理系統(tǒng)研發(fā)與銷售代理服務(wù)合同4篇
- 2024版銷售代理合同樣本3篇
- 裝修安全協(xié)議書
- 2024離婚雙方的共同債權(quán)債務(wù)處理合同
- 2024苗木種植與園林苗木種植基地規(guī)劃與建設(shè)勞務(wù)分包協(xié)議3篇
- 2024版活動場地使用合同范本
- 2025年度影視制作公司兼職制片人聘用合同3篇
- 兒童糖尿病的飲食
- 2025屆高考語文復(fù)習(xí):散文的結(jié)構(gòu)與行文思路 課件
- 干細胞項目商業(yè)計劃書
- 拉薩市2025屆高三第一次聯(lián)考(一模)語文試卷(含答案解析)
- 浙江省嘉興市2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期期末試題含解析
- 2024年高考新課標Ⅱ卷語文試題講評課件
- 無人機航拍技術(shù)教案(完整版)
- 人教PEP版(2024)三年級上冊英語Unit 4《Plants around us》單元作業(yè)設(shè)計
- 《保密法》培訓(xùn)課件
- 醫(yī)院項目竣工驗收和工程收尾階段的管理措施專項方案
評論
0/150
提交評論