新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專(zhuān)題3.3函數(shù)的奇偶性與周期性(講)解析版_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專(zhuān)題3.3函數(shù)的奇偶性與周期性(講)解析版_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專(zhuān)題3.3函數(shù)的奇偶性與周期性(講)解析版_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專(zhuān)題3.3函數(shù)的奇偶性與周期性(講)解析版_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專(zhuān)題3.3函數(shù)的奇偶性與周期性(講)解析版_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專(zhuān)題3.3函數(shù)的奇偶性與周期性新課程考試要求1.理解函數(shù)的奇偶性,會(huì)判斷函數(shù)的奇偶性,了解函數(shù)的周期性.核心素養(yǎng)培養(yǎng)學(xué)生數(shù)學(xué)抽象(例5.6.14.15)、數(shù)學(xué)運(yùn)算(例3等)、邏輯推理(例2)、直觀想象(例9.10)等核心數(shù)學(xué)素養(yǎng).考向預(yù)測(cè)1.判斷函數(shù)的奇偶性與周期性;2.函數(shù)的奇偶性、周期性,通常與抽象函數(shù)、函數(shù)的圖象以及函數(shù)的單調(diào)性結(jié)合考查,常結(jié)合三角函數(shù)加以考查,有時(shí)與數(shù)列結(jié)合考查周期數(shù)列相關(guān)問(wèn)題.【知識(shí)清單】1.函數(shù)的奇偶性奇偶性定義圖象特點(diǎn)偶函數(shù)如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)是偶函數(shù)關(guān)于y軸對(duì)稱(chēng)奇函數(shù)如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)是奇函數(shù)關(guān)于原點(diǎn)對(duì)稱(chēng)2.函數(shù)的周期性(1)周期函數(shù):對(duì)于函數(shù)y=f(x),如果存在一個(gè)非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的任何值時(shí),都有f(x+T)=f(x),那么就稱(chēng)函數(shù)y=f(x)為周期函數(shù),稱(chēng)T為這個(gè)函數(shù)的周期.(2)最小正周期:如果在周期函數(shù)f(x)的所有周期中存在一個(gè)最小的正數(shù),那么這個(gè)最小正數(shù)就叫做f(x)的最小正周期.【考點(diǎn)分類(lèi)剖析】考點(diǎn)一:函數(shù)奇偶性的判斷【典例1】【多選題】(2020·浙江杭州市·杭州高級(jí)中學(xué)高一月考)已知函數(shù)SKIPIF1<0的定義域都是R,且SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),則()A.SKIPIF1<0是奇函數(shù) B.SKIPIF1<0是奇函數(shù)C.SKIPIF1<0是偶函數(shù) D.SKIPIF1<0是偶函數(shù)【答案】AD【解析】由奇偶性的定義逐一證明即可.【詳解】對(duì)于A,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0是奇函數(shù),故A正確;對(duì)于B,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0是偶函數(shù),故B錯(cuò)誤;對(duì)于C,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0是奇函數(shù),故C錯(cuò)誤;對(duì)于D,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0是偶函數(shù),故D正確;故選:AD【典例2】【多選題】(2021·浙江高一期末)下列函數(shù)中是偶函數(shù),且在SKIPIF1<0為增函數(shù)的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【解析】根據(jù)題意,依次分析選項(xiàng)中函數(shù)的奇偶性與單調(diào)性,綜合即可得答案.【詳解】解:根據(jù)題意,依次分析選項(xiàng):對(duì)于SKIPIF1<0,SKIPIF1<0,偶函數(shù),且在SKIPIF1<0為增函數(shù),符合題意;對(duì)于SKIPIF1<0,SKIPIF1<0,不是偶函數(shù),不符合題意;對(duì)于SKIPIF1<0,SKIPIF1<0,是偶函數(shù),在SKIPIF1<0上為增函數(shù),故在SKIPIF1<0為增函數(shù),符合題意;對(duì)于SKIPIF1<0,SKIPIF1<0,是偶函數(shù),且在SKIPIF1<0為增函數(shù),符合題意;故選:SKIPIF1<0.【知識(shí)拓展】(1)奇、偶函數(shù)定義域的特點(diǎn).由于f(x)和f(-x)須同時(shí)有意義,所以奇、偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng).這是函數(shù)具有奇偶性的必要不充分條件,所以首先考慮定義域;(2)奇、偶函數(shù)的對(duì)應(yīng)關(guān)系的特點(diǎn).①奇函數(shù)有f(-x)=-f(x)?f(-x)+f(x)=0?eq\f(f-x,fx)=-1(f(x)≠0);②偶函數(shù)有f(-x)=f(x)?f(-x)-f(x)=0?eq\f(f-x,fx)=1(f(x)≠0).(3)函數(shù)奇偶性的三個(gè)關(guān)注點(diǎn).①若奇函數(shù)在原點(diǎn)處有定義,則必有f(0)=0.有時(shí)可以用這個(gè)結(jié)論來(lái)否定一個(gè)函數(shù)為奇函數(shù);②既是奇函數(shù)又是偶函數(shù)的函數(shù)只有一種類(lèi)型,即f(x)=0,x∈D,其中定義域D是關(guān)于原點(diǎn)對(duì)稱(chēng)的非空集合;③函數(shù)根據(jù)奇偶性可分為奇函數(shù)、偶函數(shù)、既奇又偶函數(shù)、非奇非偶函數(shù).(4)奇、偶函數(shù)圖象對(duì)稱(chēng)性的應(yīng)用.①若一個(gè)函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則這個(gè)函數(shù)是奇函數(shù);②若一個(gè)函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng),則這個(gè)函數(shù)是偶函數(shù).【變式探究】1.(2019·天津耀華中學(xué)高三月考)下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是()A. B.C. D.【答案】D【解析】易知和為奇函數(shù),為偶函數(shù).令,則,即且.所以為非奇非偶函數(shù).故選D.2.(2021·上海高三二模)設(shè)SKIPIF1<0,則“SKIPIF1<0圖象經(jīng)過(guò)點(diǎn)SKIPIF1<0”是“SKIPIF1<0是偶函數(shù)”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件【答案】C【解析】直接利用函數(shù)奇偶性的定義進(jìn)行判定,結(jié)合充分條件,必要條件的定義即可判斷.【詳解】若函數(shù)SKIPIF1<0圖象經(jīng)過(guò)點(diǎn)SKIPIF1<0時(shí),則SKIPIF1<0或SKIPIF1<0為偶函數(shù).若SKIPIF1<0為偶函數(shù),①SKIPIF1<0時(shí)為奇函數(shù),②SKIPIF1<0時(shí)為非奇非偶函數(shù),③SKIPIF1<0時(shí)為偶函數(shù),∴若SKIPIF1<0為偶函數(shù)時(shí),SKIPIF1<0∴函數(shù)SKIPIF1<0圖象經(jīng)過(guò)點(diǎn)SKIPIF1<0是SKIPIF1<0為偶函數(shù)的充要條件.故選:C.考點(diǎn)二:函數(shù)奇偶性的應(yīng)用【典例3】(2019·全國(guó)高考真題(文))設(shè)f(x)為奇函數(shù),且當(dāng)x≥0時(shí),f(x)=,則當(dāng)x<0時(shí),f(x)=()A. B.C. D.【答案】D【解析】是奇函數(shù),x≥0時(shí),.當(dāng)時(shí),,,得.故選D.【典例4】(2021·黑龍江哈爾濱三中高三三模(文))已知函數(shù)SKIPIF1<0為奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由奇函數(shù)對(duì)稱(chēng)性可得SKIPIF1<0,代入已知解析式解得SKIPIF1<0.【詳解】SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù),SKIPIF1<0.又SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故選:B.【典例5】(2021·黑龍江齊齊哈爾市·高三三模(理))已知實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【解析】由SKIPIF1<0,可得SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,由函數(shù)的奇偶性單調(diào)性,計(jì)算即可得出結(jié)果.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上為單調(diào)遞增的奇函數(shù),又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:4【總結(jié)提升】函數(shù)奇偶性的應(yīng)用(1)求函數(shù)解析式①將所求解析式自變量的范圍轉(zhuǎn)化為已知解析式中自變量的范圍;②將轉(zhuǎn)化后的自變量代入已知解析式;③利用函數(shù)的奇偶性求出解析式.(2)求參數(shù)值在定義域關(guān)于原點(diǎn)對(duì)稱(chēng)的前提下,根據(jù)奇函數(shù)滿(mǎn)足f(-x)=-f(x)或偶函數(shù)滿(mǎn)足f(-x)=f(x)列等式,根據(jù)等式兩側(cè)對(duì)應(yīng)相等確定參數(shù)的值.特別要注意的是:若能夠確定奇函數(shù)的定義域中包含0,可以根據(jù)f(0)=0列式求解,若不能確定則不可用此法.【變式探究】1.(2019·江西江西師大附中高三高考模擬(文))若函數(shù)為奇函數(shù),則實(shí)數(shù)的值為()A. B. C. D.【答案】B【解析】為奇函數(shù)當(dāng)時(shí),又時(shí),本題正確選項(xiàng):2.【多選題】(2021·全國(guó)高一課時(shí)練習(xí))設(shè)f(x)為偶函數(shù),且在區(qū)間(-∞,0)內(nèi)單調(diào)遞增,f(-2)=0,則下列區(qū)間中使得xf(x)<0的有()A.(-1,1) B.(0,2)C.(-2,0) D.(2,4)【答案】CD【解析】由偶函數(shù)的性質(zhì)以及f(-2)=f(2)=0畫(huà)出函數(shù)f(x)的草圖,由xf(x)<0?SKIPIF1<0或SKIPIF1<0,結(jié)合圖象得出解集.【詳解】根據(jù)題意,偶函數(shù)f(x)在(-∞,0)上單調(diào)遞增,又f(-2)=0,則函數(shù)f(x)在(0,+∞)上單調(diào)遞減,且f(-2)=f(2)=0,函數(shù)f(x)的草圖如圖又由xf(x)<0?SKIPIF1<0或SKIPIF1<0由圖可得-2<x<0或x>2即不等式的解集為(-2,0)∪(2,+∞).故選:CD3.(2021·上海高三二模)已知函數(shù)SKIPIF1<0為奇函數(shù),若SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【解析】利用奇函數(shù)的性質(zhì),代入1和-1,即可求得函數(shù)值.【詳解】由題知:SKIPIF1<0,又SKIPIF1<0為奇函數(shù),則SKIPIF1<0,故SKIPIF1<0,故答案為:SKIPIF1<0考點(diǎn)三:函數(shù)周期性及其應(yīng)用【典例6】(2021·廣德市實(shí)驗(yàn)中學(xué)高三月考(文))已知對(duì)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】根據(jù)已知條件先分析出SKIPIF1<0為周期函數(shù)并求解出周期,然后根據(jù)周期性將SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0進(jìn)行計(jì)算即可.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0為周期函數(shù)且一個(gè)周期為SKIPIF1<0.∴SKIPIF1<0.故選:B.結(jié)論點(diǎn)睛:結(jié)論點(diǎn)睛:周期性常用的幾個(gè)結(jié)論如下:(1)SKIPIF1<0對(duì)SKIPIF1<0時(shí),若SKIPIF1<0或SKIPIF1<0(SKIPIF1<0)恒成立,則SKIPIF1<0是SKIPIF1<0的一個(gè)周期;(2)SKIPIF1<0對(duì)SKIPIF1<0時(shí),若SKIPIF1<0或SKIPIF1<0或SKIPIF1<0(SKIPIF1<0)恒成立,則SKIPIF1<0是SKIPIF1<0的一個(gè)周期;(3)若SKIPIF1<0為偶函數(shù),其圖象又關(guān)于SKIPIF1<0對(duì)稱(chēng),則SKIPIF1<0是以SKIPIF1<0為一個(gè)周期的周期函數(shù);(4)若SKIPIF1<0為奇函數(shù),其圖象又關(guān)于SKIPIF1<0對(duì)稱(chēng),則SKIPIF1<0是以SKIPIF1<0為一個(gè)周期的周期函數(shù).【典例7】(2021·山東青島市·高三二模)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的圖象連續(xù)不斷,有下列四個(gè)命題:甲:SKIPIF1<0是奇函數(shù);乙:SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱(chēng);丙:SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減;?。汉瘮?shù)SKIPIF1<0的周期為2.如果只有一個(gè)假命題,則該命題是()A.甲 B.乙 C.丙 D.丁【答案】D【解析】由函數(shù)的奇偶性、周期性、對(duì)稱(chēng)性之間的相互關(guān)系可知,甲、乙、丁三者中必有一個(gè)錯(cuò)誤,結(jié)合連續(xù)函數(shù)單調(diào)性的特征可知,丙、丁互相矛盾,進(jìn)而可得結(jié)果.【詳解】由連續(xù)函數(shù)SKIPIF1<0的特征知:由于區(qū)間SKIPIF1<0的寬度為2,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減與函數(shù)SKIPIF1<0的周期為2相互矛盾,即丙、丁中有一個(gè)為假命題;若甲、乙成立,即SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0的周期為4,即丁為假命題.由于只有一個(gè)假命題,則可得該命題是丁,故選:D.【典例8】(2020·四川省石室中學(xué)高三一模(文))已知是定義域?yàn)榈钠婧瘮?shù),滿(mǎn)足,若,則()A. B. C. D.【答案】C【解析】由函數(shù)是定義域?yàn)榈钠婧瘮?shù),所以,且,又由,即,進(jìn)而可得,所以函數(shù)是以4為周期的周期函數(shù),又由,可得,,則,所以.故選C.【規(guī)律方法】1.求函數(shù)周期的方法求一般函數(shù)周期常用遞推法和換元法,形如y=Asin(ωx+φ),用公式T=計(jì)算.遞推法:若f(x+a)=-f(x),則f(x+2a)=f[(x+a)+a]=-f(x+a)=f(x),所以周期T=2a.換元法:若f(x+a)=f(x-a),令x-a=t,x=t+a,則f(t)=f(t+2a),所以周期T=2a.2.判斷函數(shù)的周期只需證明f(x+T)=f(x)(T≠0)便可證明函數(shù)是周期函數(shù),且周期為T(mén),函數(shù)的周期性常與函數(shù)的其他性質(zhì)綜合命題.3.根據(jù)函數(shù)的周期性,可以由函數(shù)局部的性質(zhì)得到函數(shù)的整體性質(zhì),在解決具體問(wèn)題時(shí),要注意結(jié)論:若T是函數(shù)的周期,則kT(k∈Z且k≠0)也是函數(shù)的周期.【變式探究】1.(2020·六盤(pán)山高級(jí)中學(xué)高三三模(文))奇函數(shù)的定義域?yàn)镽,若為偶函數(shù),且,則=()A.﹣2 B.﹣1 C.0 D.1【答案】B【解析】由題意,奇函數(shù)的定義域?yàn)镽,若為偶函數(shù),則,即,則,即是周期為4的周期函數(shù),,,則,故選:B.2.(2019·廣東高考模擬(文))已知f(x)是定義在R上的奇函數(shù),滿(mǎn)足f(1+x)=f(1?x),且f(1)=a,則f(2)+f(3)+f(4)=()A.0 B.?a C.a(chǎn) D.3a【答案】B【解析】因?yàn)楹瘮?shù)f(x)滿(mǎn)足f(1+x)=f(1?x),所以f(x)關(guān)于直線x=1對(duì)稱(chēng),所以f(2)=f(0),f(3)=f(?1)又f(x)是定義在R上的奇函數(shù),所以f(0)=0,又由f(1+x)=f(1?x)可得f(x+1)=f(1?x)=?f(x?1),所以f(x+2)=?f(x),故f(x+4)=?f(x+2)=f(x),因此,函數(shù)f(x)是以4為周期的周期函數(shù),所以f(4)=f(0),又f(1)=a因此f(2)+f(3)+f(4)=f(0)+f(?1)+f(0)=?f(1)=?a.故選B3.(2019·山東高考模擬(文))已知定義在上的奇函數(shù)滿(mǎn)足,當(dāng)時(shí),,則()A.2019 B.0 C.1 D.-1【答案】B【解析】由得:的周期為又為奇函數(shù),,,即:本題正確選項(xiàng):考點(diǎn)四:函數(shù)性質(zhì)的綜合應(yīng)用【典例8】(2021·寧夏銀川市·賀蘭縣景博中學(xué)高三二模(文))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且滿(mǎn)足SKIPIF1<0,數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0?公差為SKIPIF1<0的等差數(shù)列,則SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】利用函數(shù)的對(duì)稱(chēng)性首先求出函數(shù)SKIPIF1<0是以2為周期的函數(shù),且SKIPIF1<0,而數(shù)列的通項(xiàng)公式為SKIPIF1<0,則可將所求轉(zhuǎn)化為SKIPIF1<0,再根據(jù)函數(shù)的奇偶性可得SKIPIF1<0,從而有SKIPIF1<0,即可求得結(jié)果.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0是以2為周期的函數(shù),而SKIPIF1<0,∴SKIPIF1<0,又∵數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0?公差為SKIPIF1<0的等差數(shù)列,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,又∵SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),∴SKIPIF1<0,而SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:B.【典例9】(2020·山西省高三其他(文))已知函數(shù)是定義在R上的偶函數(shù),且在區(qū)間單調(diào)遞增,若實(shí)數(shù)a滿(mǎn)足,則a的取值范圍是()A. B. C. D.【答案】C【解析】因?yàn)楹瘮?shù)f(x)是定義在R上的偶函數(shù),所以,則為,因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以,解得,則a的取值范圍是,故選:C.【典例10】【多選題】(2020·山東省高三其他)已知偶函數(shù)滿(mǎn)足,則下列說(shuō)法正確的是().A.函數(shù)是以2為周期的周期函數(shù) B.函數(shù)是以4為周期的周期函數(shù)C.函數(shù)為奇函數(shù) D.函數(shù)為偶函數(shù)【答案】BC【解析】對(duì)于選項(xiàng),∵函數(shù)為偶函數(shù),∴.∵,∴,則,即,∴,故函數(shù)是周期為4的周期函數(shù),由此可知選項(xiàng)A錯(cuò)誤,選項(xiàng)B正確;對(duì)于選項(xiàng),令,則.在中,將換為,得,∴,∴,則函數(shù)為奇函數(shù),所以選項(xiàng)C正確.對(duì)于選項(xiàng),由題意不妨取滿(mǎn)足條件的函數(shù),則為奇函數(shù),所以選項(xiàng)D錯(cuò)誤.故選:BC.【典例11】(2020·重慶高三其他(文))定義在R上的奇函數(shù)滿(mǎn)足:,且當(dāng)時(shí),,若,則實(shí)數(shù)m的值為()A.2 B.1 C.0 D.-1【答案】B【解析】由為奇函數(shù)知,∴,即,∴,∴是周期為3的周期函數(shù),故,即,∴.故選:B.【典例12】(2021·湖南高三三模)函數(shù)SKIPIF1<0的定義域?yàn)镈,對(duì)D內(nèi)的任意SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),恒有SKIPIF1<0,則稱(chēng)SKIPIF1<0為非減函數(shù).已知SKIPIF1<0是定義域?yàn)镾KIPIF1<0的非減函數(shù),且滿(mǎn)足:①對(duì)任意SKIPIF1<0,SKIPIF1<0.②對(duì)任意SKIPIF1<0.則SKIPIF1<0的值為_(kāi)_______.【答案】2【解析】分析所給條件,得到SKIPIF1<0的函數(shù)圖像在SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),再由任意SKIPIF1<0得出SKIPIF1<0且SKIPIF1<0,又SKIPIF1<0為非減函數(shù)即可求得SKIPIF1<0時(shí),必有SKIPIF1<0,據(jù)此即可得解.【詳解】根據(jù)題意,由對(duì)任意SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的函數(shù)圖像在SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng),令SKIPIF1<0可得SKIPIF1<0,又因?yàn)閷?duì)任意SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0且SKIPIF1<0是定義域?yàn)镾KIPIF1<0的非減函數(shù),所以當(dāng)SKIPIF1<0時(shí),必有SKIPIF1<0,又由于SKIPIF1<0的函數(shù)圖像關(guān)于SKIPIF1<0對(duì)稱(chēng),所以SKIPIF1<0時(shí),也有SKIPIF1<0,SKIPIF1<0,故答案為:2.【規(guī)律方法】函數(shù)性質(zhì)綜合應(yīng)用問(wèn)題的常見(jiàn)類(lèi)型及解

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論