版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東深圳平湖外國語學校2024屆高一上數(shù)學期末教學質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.設全集,集合,集合,則集合()A. B.C. D.2.已知為正實數(shù),且,則的最小值為()A.4 B.7C.9 D.113.我國著名數(shù)學家華羅庚曾說:“數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結合百般好,隔裂分家萬事休.”在數(shù)學的學習和研究中,常用函數(shù)的圖像來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)圖像的特征.我們從這個商標中抽象出一個圖象如圖,其對應的函數(shù)可能是()A. B.C. D.4.若函數(shù)是函數(shù)(且)的反函數(shù),且,則()A. B.C. D.5.的值是A. B.C. D.6.在中,下列關系恒成立的是A. B.C. D.7.下列函數(shù),表示相同函數(shù)的是()A., B.,C., D.,8.已知偶函數(shù)在區(qū)間單調(diào)遞減,則滿足的x取值范圍是A. B.C. D.9.函數(shù)f(x)=|x-2|-lnx在定義域內(nèi)零點的個數(shù)為()A.0 B.1C.2 D.310.已知角的終邊經(jīng)過點,且,則的值為()A. B.C. D.11.給定函數(shù):①;②;③;④,其中在區(qū)間上單調(diào)遞減的函數(shù)序號是()A.①② B.②③C.③④ D.①④12.過點(1,0)且與直線x-2y-2=0平行的直線方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=0二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.若定義域為的函數(shù)滿足:對任意能構成三角形三邊長的實數(shù),均有,,也能構成三角形三邊長,則m的最大值為______.(是自然對數(shù)的底)14.正三棱錐中,,則二面角的大小為__________15.比較大小:________.16.設角的頂點與坐標原點重合,始變與軸的非負半軸重合,若角的終邊上一點的坐標為,則的值為__________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知集合且和集合(Ⅰ)求;(Ⅱ)若全集,集合,且,求a的取值范圍18.某班級欲在半徑為1米的圓形展板上做班級宣傳,設計方案如下:用四根不計寬度的銅條將圓形展板分成如圖所示的形狀,其中正方形ABCD的中心在展板圓心,正方形內(nèi)部用宣傳畫裝飾,若銅條價格為10元/米,宣傳畫價格為20元/平方米,展板所需總費用為銅條的費用與宣傳畫的費用之和(1)設,將展板所需總費用表示成的函數(shù);(2)若班級預算為100元,試問上述設計方案是否會超出班級預算?19.已知函數(shù)是定義在R上的奇函數(shù).(1)求函數(shù)的解析式,判斷并證明函數(shù)的單調(diào)性;(2)若存在實數(shù),使成立,求實數(shù)的取值范圍.20.如圖,天津之眼,全稱天津永樂橋摩天輪,是世界上唯一一個橋上瞰景摩天輪,是天津的地標之一.永樂橋分上下兩層,上層橋面預留了一個長方形開口,供摩天輪輪盤穿過,摩天輪的直徑為110米,外掛裝48個透明座艙,在電力的驅動下逆時針勻速旋轉,轉一圈大約需要30分鐘.現(xiàn)將某一個透明座艙視為摩天輪上的一個點,當點到達最高點時,距離下層橋面的高度為113米,點在最低點處開始計時.(1)試確定在時刻(單位:分鐘)時點距離下層橋面的高度(單位:米);(2)若轉動一周內(nèi)某一個摩天輪透明座艙在上下兩層橋面之間的運行時間大約為5分鐘,問上層橋面距離下層橋面的高度約為多少米?21.已知集合,集合.(1)求集合;(2)求22.定義在上的函數(shù)(且)為奇函數(shù)(1)求實數(shù)的值;(2)若函數(shù)的圖象經(jīng)過點,求使方程在有解的實數(shù)的取值范圍;(3)不等式對于任意的恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】利用補集和交集的定義可求得結果.【詳解】由已知可得或,因此,,故選:D.2、C【解析】由,展開后利用基本不等式求最值【詳解】且,∴,當且僅當,即時,等號成立∴的最小值為9故選:C3、A【解析】由圖象知函數(shù)的定義域排除選項選項B、D,再根據(jù)不成立排除選項C,即可得正確選項.【詳解】由圖知的定義域為,排除選項B、D,又因為當時,,不符合圖象,所以排除C,故選:A【點睛】思路點睛:排除法是解決函數(shù)圖象問題的主要方法,根據(jù)函數(shù)的定義域、與坐標軸的交點、函數(shù)值的符號、單調(diào)性、奇偶性等,從而得出正確結果.4、B【解析】由題意可得出,結合可得出的值,進而可求得函數(shù)的解析式.【詳解】由于函數(shù)是函數(shù)(且)的反函數(shù),則,則,解得,因此,.故選:B.5、B【解析】利用誘導公式求解.【詳解】解:由誘導公式得,故選:B.6、D【解析】利用三角函數(shù)誘導公式,結合三角形的內(nèi)角和為,逐個去分析即可選出答案【詳解】由題意知,在三角形ABC中,,對A選項,,故A選項錯誤;對B選項,,故B選項錯誤;對C選項,,故C選項錯誤;對D選項,,故D選項正確.故選D.【點睛】本題考查了三角函數(shù)誘導公式,屬于基礎題7、B【解析】由兩個函數(shù)相同的定義,定義域相同且對應法則相同,依次判斷即可【詳解】選項A,一個為指數(shù)運算、一個為對數(shù)運算,對應法則不同,因此不為相同函數(shù);選項B,,為相同函數(shù);選項C,函數(shù)定義域為,函數(shù)定義域為,因此不為相同函數(shù);選項D,與函數(shù)對應法則不同,因此不為相同函數(shù)故選:B8、D【解析】根據(jù)題意,結合函數(shù)的奇偶性與單調(diào)性分析可得,解不等式可得x的取值范圍,即可得答案【詳解】根據(jù)題意,偶函數(shù)在區(qū)間單調(diào)遞減,則在上為增函數(shù),則,解可得:,即x的取值范圍是;故選D【點睛】本題考查函數(shù)奇偶性與單調(diào)性綜合應用,注意將轉化為關于x不等式,屬于基礎題9、C【解析】分別畫出函數(shù)y=lnx(x>0)和y=|x-2|(x>0)的圖像,可得2個交點,故f(x)在定義域中零點個數(shù)為2.10、B【解析】根據(jù)點,先表示出該點和原點之間的距離,再根據(jù)三角函數(shù)的定義列出等式,解方程可得答案.【詳解】因為角的終邊經(jīng)過點,則,因為,所以,且,解得,故選:B11、B【解析】①,為冪函數(shù),且的指數(shù),在上為增函數(shù);②,,為對數(shù)型函數(shù),且底數(shù),在上為減函數(shù);③,在上為減函數(shù),④為指數(shù)型函數(shù),底數(shù)在上為增函數(shù),可得解.【詳解】①,為冪函數(shù),且的指數(shù),在上為增函數(shù),故①不可選;②,,為對數(shù)型函數(shù),且底數(shù),在上為減函數(shù),故②可選;③,在上為減函數(shù),在上為增函數(shù),故③可選;④為指數(shù)型函數(shù),底數(shù)在上為增函數(shù),故④不可選;綜上所述,可選的序號為②③,故選B.【點睛】本題考查基本初等函數(shù)的單調(diào)性,熟悉基本初等函數(shù)的解析式、圖像和性質(zhì)是解決此類問題的關鍵,屬于基礎題.12、A【解析】設出直線方程,利用待定系數(shù)法得到結果.【詳解】設與直線平行的直線方程為,將點代入直線方程可得,解得則所求直線方程為.故A正確【點睛】本題主要考查兩直線的平行問題,屬容易題.兩直線平行傾斜角相等,所以斜率相等或均不存在.所以與直線平行的直線方程可設為二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、##【解析】不妨設三邊的大小關系為:,利用函數(shù)的單調(diào)性,得出,,的大小關系,作為三角形三邊則有任意兩邊之和大于第三邊,再利用基本不等式求出邊的范圍得出的最大值即可.【詳解】在上嚴格增,所以,不妨設,因為對任意能構成三角形三邊長的實數(shù),均有,,也能構成三角形三邊長,所以,因為,所以,因為對任意都成立,所以,所以,所以,所以,所以m的最大值為故答案為:.14、【解析】取中點為O,連接VO,BO在正三棱錐中,因為,所以,所以=,所以15、<【解析】利用誘導公式,將角轉化至同一單調(diào)區(qū)間,根據(jù)單調(diào)性,比較大小.【詳解】,,又在內(nèi)單調(diào)遞增,由所以,即<.故答案為:<.【點睛】本題考查了誘導公式,利用單調(diào)性比較正切值的大小,屬于基礎題.16、【解析】三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(Ⅰ);(Ⅱ).【解析】Ⅰ由函數(shù)的定義域及值域的求法得,,可求Ⅱ先求解C,再由集合的補集的運算及集合間的包含關系得,解得【詳解】Ⅰ由,,得,即,解不等式,得,即,所以,Ⅱ解不等式得:,即,又,又,所以,解得:,【點睛】本題考查了函數(shù)的定義域及值域的求法,考查了集合的交集、補集的運算及集合間的包含關系,屬于簡單題18、(1);(2)上述設計方案是不會超出班級預算【解析】(1)過點O作,垂足為H,用表示出OH和PH,從而可得銅條長度和正方形的面積,進而得出函數(shù)式;(2)利用同角三角函數(shù)的關系和二次函數(shù)的性質(zhì)求出預算的最大值即可得出結論【詳解】(1)過點O作,垂足為H,則,,正方形ABCD的中心在展板圓心,銅條長為相等,每根銅條長,,展板所需總費用為(2),當時等號成立.上述設計方案是不會超出班級預算【點睛】本題考查了函數(shù)應用,三角函數(shù)恒等變換與求值,屬于中檔題19、(1),函數(shù)在上單調(diào)遞減,證明見解析(2)【解析】(1)由為奇函數(shù)且定義域為R,則,即可求得,進而得到解析式;設,代入解析式中證得即可;(2)由奇函數(shù),可將問題轉化為,再利用單調(diào)性可得存在實數(shù),使成立,即為存在實數(shù),使成立,進而求解即可【詳解】解:(1)為奇函數(shù)且定義域為R,所以,即,所以,所以,所以函數(shù)在R上單調(diào)遞減,設,則,因為,所以,即,所以,所以,即,所以函數(shù)在上單調(diào)遞減.(2)存在實數(shù),使成立.由題,則存在實數(shù),使成立,因為為奇函數(shù),所以成立,又因為函數(shù)在R上單調(diào)遞減,所以存在實數(shù),使成立,即存在實數(shù),使成立,而當時,,所以的取值范圍是【點睛】本題考查利用函數(shù)奇偶性求解析式,考查定義法證明函數(shù)單調(diào)性,考查已知函數(shù)單調(diào)性求參數(shù)問題,考查轉化思想和運算能力20、(1)米.(2)米.【解析】(1)如圖,建立平面直角坐標系,以為始邊,為終邊的角為,計算得到答案.(2)根據(jù)對稱性,上層橋面距離下層橋面的高度為點在分鐘時距離下層橋面的高度,計算得到答案.【詳解】(1)如圖,建立平面直角坐標系.由題可知在分鐘內(nèi)所轉過的角為,因為點在最低點處開始計時,所以以為始邊,為終邊的角為,所以點的縱坐標為,則(),故在分鐘時點距離下層橋面的高度為(米).(2)根據(jù)對稱性,上層橋面距離下層橋面的高度為點在分鐘時距離下層橋面的高度.當時,故上層橋面距離下層橋面的高度約為米.【點睛】本題考查了三角函數(shù)的應用,意在考查學生的應用能力.21、(1);(2)【解析】⑴解不等式求得集合⑵根據(jù)已知的集合,集合,運用交集的運算即可求得解析:(1)由已知得.(2).22、(1)1(2)(3)答案見解析【解析】(1)根據(jù)題意可得,即可得解;(2)根據(jù)函數(shù)的圖象經(jīng)過點,可得函數(shù)經(jīng)過點,從而可求得,在求出函數(shù)在時的值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 21551.4-2024家用和類似用途電器的抗菌、除菌、凈化功能第4部分:電冰箱的特殊要求
- 2024年道路危險貨物運輸安全協(xié)議范本3篇
- 2024建筑工程勞務承包合同協(xié)議書范本
- 2024版消防器材供貨合同
- 2024燃氣工程代建及后期維護服務合同3篇
- 2025年度新型城鎮(zhèn)化建設項目合作合同3篇
- 2024版水泥購銷合同參考樣本
- 二零二五年度租賃合同稅費承擔范本6篇
- 二零二五年度班主任新手跟崗學習與技能培訓合同3篇
- 二零二五版房地產(chǎn)交易兜底協(xié)議范本3篇
- 人教版(2025新版)七年級下冊英語:寒假課內(nèi)預習重點知識默寫練習
- 藝術品捐贈協(xié)議
- 網(wǎng)絡安全系統(tǒng)運維方案
- 2024年標準溝渠回填工程承包協(xié)議版B版
- 2024年專用:物業(yè)安全管理協(xié)議3篇
- 【公開課】同一直線上二力的合成+課件+2024-2025學年+人教版(2024)初中物理八年級下冊+
- 《政府采購業(yè)務培訓》課件
- 《醫(yī)療器械召回管理辦法》培訓2024
- 網(wǎng)絡安全培訓內(nèi)容課件
- 通信線路維護安全培訓
- 專業(yè)微信小程序開發(fā)協(xié)議范例版
評論
0/150
提交評論