2024屆四川省成都市高一數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
2024屆四川省成都市高一數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
2024屆四川省成都市高一數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
2024屆四川省成都市高一數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
2024屆四川省成都市高一數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆四川省成都市高一數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若不等式(>0,且≠1)在[1,2]上恒成立,則的取值范圍是A.(1,2) B.(2,)C.(0,1)(2,) D.(0,)2.函數(shù),則函數(shù)的零點(diǎn)個(gè)數(shù)為()A.2個(gè) B.3個(gè)C.4個(gè) D.5個(gè)3.已知集合,則()A.0或1 B.C. D.或4.英國物理學(xué)家和數(shù)學(xué)家牛頓提出了物體在常溫環(huán)境下溫度變化的冷卻模型,設(shè)物體的初始溫度為,環(huán)境溫度為,其中,經(jīng)過后物體溫度滿足(其中k為正常數(shù),與物體和空氣的接觸狀況有關(guān)).現(xiàn)有一個(gè)的物體,放在的空氣中冷卻,后物體的溫度是,則()(參考數(shù)據(jù):)A.1.17 B.0.85C.0.65 D.0.235.已知,則A. B.C. D.6.已知矩形,,,沿矩形的對(duì)角線將平面折起,若四點(diǎn)都在同一球面上,則該球面的面積為()A. B.C. D.7.函數(shù)y=f(x)在R上為增函數(shù),且f(2m)>f(﹣m+9),則實(shí)數(shù)m的取值范圍是()A.(﹣∞,﹣3) B.(0,+∞)C.(3,+∞) D.(﹣∞,﹣3)∪(3,+∞)8.函數(shù)的單調(diào)遞減區(qū)間是()A.() B.()C.() D.()9.已知函數(shù),對(duì)于任意,且,均存在唯一實(shí)數(shù),使得,且,若關(guān)于的方程有4個(gè)不相等的實(shí)數(shù)根,則的取值范圍是A. B.C. D.10.已知函數(shù)f(x)(x∈R)滿足f(2-x)=-f(x),若函數(shù)y=與f(x)圖象的交點(diǎn)為(x1,y1),(x2,y2),…,(xm,ym)(m∈N*),則x1+x2+x3+…+xm的值為()A.4m B.2mC.m D.0二、填空題:本大題共6小題,每小題5分,共30分。11.已知集合A={x|2x>1},B={x|log2x<0},則?AB=___12.若向量與共線且方向相同,則___________13.在中,,,則面積的最大值為___________.14.已知向量,滿足=(3,-4),||=2,|+|=,則,的夾角等于______15.已知2弧度的圓心角所對(duì)的弦長為2,那么這個(gè)圓心角所對(duì)弧長為____16.已知向量滿足,且,則與的夾角為_______三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.某實(shí)驗(yàn)室一天的溫度(單位:)隨時(shí)間(單位:)的變化近似滿足函數(shù)關(guān)系:,.(Ⅰ)求實(shí)驗(yàn)室這一天的最大溫差;(Ⅱ)若要求實(shí)驗(yàn)室溫度不高于,則在哪個(gè)時(shí)間段實(shí)驗(yàn)室需要降溫?18.為保護(hù)環(huán)境,污水進(jìn)入河流前都要進(jìn)行凈化處理.我市工業(yè)園區(qū)某工廠的污水先排入凈化池,然后加入凈化劑進(jìn)行凈化處理.根據(jù)實(shí)驗(yàn)得出,在一定范圍內(nèi),每放入1個(gè)單位的凈化劑,在污水中釋放的濃度y(單位:毫克/立方米)隨著時(shí)間x(單位:小時(shí))變化的函數(shù)關(guān)系式近似為.若多次加進(jìn)凈化劑,則某一時(shí)刻凈化劑在污水中釋放的濃度為每次投放的凈化劑在相應(yīng)時(shí)刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)凈化劑在污水中釋放的濃度不低于4(毫克/立方米)時(shí),它才能起到凈化污水的作用.(1)若投放1個(gè)單位的凈化劑4小時(shí)后,求凈化劑在污水中釋放的濃度;(2)若一次投放4個(gè)單位的凈化劑并起到凈化污水的作用,則凈化時(shí)間約達(dá)幾小時(shí)?(結(jié)果精確到0.1,參考數(shù)據(jù):,)(3)若第一次投放1個(gè)單位的凈化劑,3小時(shí)后再投放2個(gè)單位的凈化劑,設(shè)第二次投放t小時(shí)后污水中凈化劑濃度為(毫克/立方米),其中,求的表達(dá)式和濃度的最小值.19.已知為銳角,(1)求的值;(2)求的值20.如圖,△ABC中,,在三角形內(nèi)挖去一個(gè)半圓(圓心O在邊BC上,半圓與AC、AB分別相切于點(diǎn)C、M,與BC交于點(diǎn)N),將△ABC繞直線BC旋轉(zhuǎn)一周得到一個(gè)旋轉(zhuǎn)體(1)求該幾何體中間一個(gè)空心球的表面積的大小;(2)求圖中陰影部分繞直線BC旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.21.已知直線:與圓:交于,兩點(diǎn).(1)求的取值范圍;(2)若,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】分類討論:①若a>1,由題意可得:在區(qū)間上恒成立,即在區(qū)間上恒成立,則,結(jié)合反比例函數(shù)的單調(diào)性可知當(dāng)時(shí),,此時(shí);②若0<a<1,由題意可得:在區(qū)間上恒成立,即,,函數(shù),結(jié)合二次函數(shù)的性質(zhì)可知,當(dāng)時(shí),取得最大值1,此時(shí)要求,與矛盾.綜上可得:的取值范圍是(2,).本題選擇B選項(xiàng).點(diǎn)睛:在解決與對(duì)數(shù)函數(shù)相關(guān)的比較大小或解不等式問題時(shí),要優(yōu)先考慮利用對(duì)數(shù)函數(shù)的單調(diào)性來求解.在利用單調(diào)性時(shí),一定要明確底數(shù)a的取值對(duì)函數(shù)增減性的影響,及真數(shù)必須為正的限制條件2、D【解析】函數(shù)h(x)=f(x)﹣log4x的零點(diǎn)個(gè)數(shù)?函數(shù)f(x)與函數(shù)y=log4x的圖象交點(diǎn)個(gè)數(shù).畫出函數(shù)f(x)與函數(shù)y=log4x的圖象(如上圖),其中=的圖像可以看出來,當(dāng)x增加個(gè)單位,函數(shù)值變?yōu)樵瓉淼囊话?,即往右移個(gè)單位,函數(shù)值變?yōu)樵瓉淼囊话?;依次類推;根?jù)圖象可得函數(shù)f(x)與函數(shù)y=log4x的圖象交點(diǎn)為5個(gè)∴函數(shù)h(x)=f(x)﹣log4x的零點(diǎn)個(gè)數(shù)為5個(gè).故選D3、D【解析】由集合的概念可知方程只有一個(gè)解,且解為,分為二次項(xiàng)系數(shù)為0和不為0兩種情形,即可得結(jié)果.【詳解】因?yàn)闉閱卧丶苑匠讨挥幸粋€(gè)解,且解為,當(dāng)時(shí),,此時(shí);當(dāng)時(shí),,即,此時(shí),故選:D.4、D【解析】根據(jù)所給公式,將所給條件中的溫度相應(yīng)代入,利用對(duì)數(shù)的運(yùn)算求解即可.【詳解】根據(jù)題意:的物體,放在的空氣中冷卻,后物體的溫度是,有:,所以,故,即,故選:D.5、D【解析】考點(diǎn):同角間三角函數(shù)關(guān)系6、C【解析】矩形ABCD,AB=6,BC=8,矩形的對(duì)角線AC=10為該球的直徑,所以該球面的面積為.故選C.7、C【解析】根據(jù)增函數(shù)的定義求解【詳解】解:∵函數(shù)y=f(x)在R上為增函數(shù),且f(2m)f(﹣m+9),∴2m﹣m+9,解得m3,故選:C8、A【解析】根據(jù)余弦函數(shù)單調(diào)性,解得到答案.【詳解】解:,令,,解得,,故函數(shù)的單調(diào)遞減區(qū)間為;故選:A.9、A【解析】解:由題意可知f(x)在[0,+∞)上單調(diào)遞增,值域?yàn)閇m,+∞),∵對(duì)于任意s∈R,且s≠0,均存在唯一實(shí)數(shù)t,使得f(s)=f(t),且s≠t,∴f(x)在(﹣∞,0)上是減函數(shù),值域?yàn)椋╩,+∞),∴a<0,且﹣b+1=m,即b=1﹣m∵|f(x)|=f()有4個(gè)不相等的實(shí)數(shù)根,∴0<f()<﹣m,又m<﹣1,∴0m,即0<(1)m<﹣m,∴﹣4<a<﹣2,∴則a的取值范圍是(﹣4,﹣2),故選A點(diǎn)睛:本題中涉及根據(jù)函數(shù)零點(diǎn)求參數(shù)取值,是高考經(jīng)常涉及的重點(diǎn)問題,(1)利用零點(diǎn)存在的判定定理構(gòu)建不等式求解;(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解,如果涉及由幾個(gè)零點(diǎn)時(shí),還需考慮函數(shù)的圖象與參數(shù)的交點(diǎn)個(gè)數(shù);(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.10、C【解析】由條件可得,即有關(guān)于點(diǎn)對(duì)稱,又的圖象關(guān)于點(diǎn)對(duì)稱,即有,為交點(diǎn),即有,也為交點(diǎn),計(jì)算即可得到所求和【詳解】解:函數(shù)滿足,即為,可得關(guān)于點(diǎn)對(duì)稱,函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,即有,為交點(diǎn),即有,也為交點(diǎn),,為交點(diǎn),即有,也為交點(diǎn),則有.故選.【點(diǎn)睛】本題考查抽象函數(shù)的求和及對(duì)稱性的運(yùn)用,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、[1,+∞)【解析】由指數(shù)函數(shù)的性質(zhì)化簡集合;由對(duì)數(shù)函數(shù)的性質(zhì)化簡集合,利用補(bǔ)集的定義求解即可.【詳解】,所以,故答案為.【點(diǎn)睛】研究集合問題,一定要抓住元素,看元素應(yīng)滿足的屬性.研究兩集合的關(guān)系時(shí),關(guān)鍵是將兩集合的關(guān)系轉(zhuǎn)化為元素間的關(guān)系,本題實(shí)質(zhì)求滿足屬于集合且不屬于集合的元素的集合.12、2【解析】向量共線可得坐標(biāo)分量之間的關(guān)系式,從而求得n.【詳解】因?yàn)橄蛄颗c共線,所以;由兩者方向相同可得.【點(diǎn)睛】本題主要考查共線向量的坐標(biāo)表示,熟記共線向量的充要條件是求解關(guān)鍵.13、【解析】利用誘導(dǎo)公式,兩角和與差余弦公式、同角間的三角函數(shù)關(guān)系得,得均為銳角,設(shè)邊上的高為,由表示出,利用基本不等式求得的最大值,即可得三角形面積最大值【詳解】中,,所以,整理得,即,所以均為銳角,作于,如圖,記,則,,所以,,當(dāng)且僅當(dāng)即時(shí)等號(hào)成立.所以,的最大值為故答案為:14、【解析】利用求解向量間的夾角即可【詳解】因?yàn)椋?,因?yàn)?,所以,即,所以,所以,因?yàn)橄蛄繆A角取值范圍是,所以向量與向量的夾角為【點(diǎn)睛】本題考查向量的運(yùn)算,這種題型中利用求解向量間的夾角同時(shí)需注意15、【解析】解直角三角形AOC,求出半徑AO,代入弧長公式求出弧長的值解:如圖:設(shè)∠AOB=2,AB=2,過點(diǎn)0作OC⊥AB,C為垂足,并延長OC交于D,則∠AOD=∠BOD=1,AC=AB=1Rt△AOC中,r=AO==,從而弧長為α×r=2×=,故答案為考點(diǎn):弧長公式16、##【解析】根據(jù)平面向量的夾角公式即可求出【詳解】設(shè)與的夾角為,由夾角余弦公式,解得故答案為:三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)從中午點(diǎn)到晚上點(diǎn).【解析】(Ⅰ)利用輔助角公式化簡函數(shù)的解析式為,由此可得出實(shí)驗(yàn)室這一天的最大溫差;(Ⅱ)由,得出,令,得到,解此不等式即可得出結(jié)論.【詳解】(Ⅰ),.因此,實(shí)驗(yàn)室這一天的最大溫差為;(Ⅱ)當(dāng)時(shí),,令,得,所以,解得,因此,實(shí)驗(yàn)室從中午點(diǎn)到晚上點(diǎn)需要降溫.【點(diǎn)睛】本題考查三角函數(shù)模型在生活中的應(yīng)用,涉及正弦不等式的求解,考查運(yùn)算求解能力,屬于中等題.18、(1)6毫克/立方米(2)7.1(3),;的最小值為12毫克/立方米【解析】(1)由函數(shù)解析式,將代入即可得解;(2)分和兩種情況討論,根據(jù)題意列出不等式,從而可得出答案;(3)根據(jù)題意寫出函數(shù)的解析式,再根據(jù)基本不等式即可求得最小值.【小問1詳解】解:由,當(dāng)時(shí),,所以若投放1個(gè)單位的凈化劑4小時(shí)后,凈化劑在污水中釋放的濃度為6毫克/立方米;【小問2詳解】解:因?yàn)閮艋瘎┰谖鬯嗅尫诺臐舛炔坏陀?(毫克/立方米)時(shí),它才能起到凈化污水的作用,當(dāng)時(shí),令,得恒成立,所以當(dāng)時(shí),起到凈化污水的作用,當(dāng)時(shí),令,得,則,所以,綜上所述當(dāng)時(shí),起到凈化污水的作用,所以若一次投放4個(gè)單位的凈化劑并起到凈化污水的作用,則凈化時(shí)間約達(dá)7.1小時(shí);【小問3詳解】解:因?yàn)榈谝淮瓮度?個(gè)單位的凈化劑,3小時(shí)后再投入2個(gè)單位凈化劑,要計(jì)算的是第二次投放t小時(shí)后污水中凈化劑濃度為,所以,,因?yàn)?,所以,?dāng)且僅當(dāng),即時(shí)取等號(hào),所以,,當(dāng)時(shí),取最小值12毫克/立方米.19、(1);(2).【解析】(1)根據(jù)題中條件,求出,,再由兩角差的余弦公式,求出,根據(jù)二倍角公式,即可求出結(jié)果;(2)由(1)求出,,再由兩角差的正切公式,即可求出結(jié)果.【詳解】(1),為銳角,且,,則,,,,;(2)由(1),所以,則,又,,;.20、(1);(2)【解析】根據(jù)旋轉(zhuǎn)體的軸截面圖,利用平面幾何知識(shí)求得球的半徑與長,再利用面積公式與體積公式計(jì)算即可.【詳解】解:(1)連接,則,設(shè),在中,,;(2),∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論