




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆山東省招遠市第一中學數(shù)學高一上期末學業(yè)質(zhì)量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.角的終邊過點,則()A. B.C. D.2.設(shè),,,則a,b,c的大小關(guān)系是()A. B.C. D.3.袋中裝有5個小球,顏色分別是紅色、黃色、白色、黑色和紫色.現(xiàn)從袋中隨機抽取3個小球,設(shè)每個小球被抽到的機會均相等,則抽到白球或黑球的概率為A. B.C. D.4.如圖,一個直三棱柱形容器中盛有水,且側(cè)棱.若側(cè)面水平放置時,液面恰好過的中點,當?shù)酌鍭BC水平放置時,液面高為()A.6 B.7C.2 D.45.若,則()A. B.C. D.26.已知,則()A. B.C.2 D.7.已知為常數(shù),函數(shù)在內(nèi)有且只有一個零點,則常數(shù)的值形成的集合是A. B.C. D.8.如圖,在三棱錐S-ABC中,G1,G2分別是△SAB和△SAC的重心,則直線G1G2與BC的位置關(guān)系是()A.相交 B.平行C.異面 D.以上都有可能9.點M(1,4)關(guān)于直線l:x-y+1=0對稱的點的坐標是()A.(4,1) B.(3,2)C.(2,3) D.(-1,6)10.體育老師記錄了班上10名同學1分鐘內(nèi)的跳繩次數(shù),得到如下數(shù)據(jù):88,94,96,98,98,99,100,101,101,116.這組數(shù)據(jù)的60%分位數(shù)是()A.98 B.99C.99.5 D.10011.納皮爾是蘇格蘭數(shù)學家,其主要成果有球面三角中納皮爾比擬式、納皮爾圓部法則(1614)和納皮爾算籌(1617),而最大貢獻是對數(shù)的發(fā)明,著有《奇妙的對數(shù)定律說明書》,并且發(fā)明了對數(shù)尺,可以利用對數(shù)尺查詢出任意一對數(shù)值.現(xiàn)將物體放在空氣中冷卻,如果物體原來的溫度是(℃),空氣的溫度是(℃),經(jīng)過t分鐘后物體的溫度T(℃)可由公式得出,如溫度為90℃的物體,放在空氣中冷卻2.5236分鐘后,物體的溫度是50℃,若根據(jù)對數(shù)尺可以查詢出,則空氣溫度是()A.5℃ B.10℃C.15℃ D.20℃12.已知集合,,,則實數(shù)a的取值集合為()A. B.C. D.二、填空題(本大題共4小題,共20分)13.若函數(shù),則______14.函數(shù)在上是x的減函數(shù),則實數(shù)a的取值范圍是______15.設(shè),則__________16.已知向量,,且,則__________.三、解答題(本大題共6小題,共70分)17.解答題(1);(2)lg20+log1002518.2020年12月26日,我國首座跨海公鐵兩用橋、世界最長跨海峽公鐵兩用大橋——平潭海峽公鐵兩用大橋全面通車.這是中國第一座真正意義上的公鐵兩用跨海大橋,是連接福州城區(qū)和平潭綜合實驗區(qū)的快速通道,遠期規(guī)劃可延長到,對促進兩岸經(jīng)貿(mào)合作和文化交流等具有重要意義.在一般情況下,大橋上的車流速度(單位:千米/時)是車流密度(單位:輛/千米)的函數(shù).當橋上的車流密度達到輛/千米時,將造成堵塞,此時車流速度為;當車流密度不超過輛/千米時,車流速度為千米/時,研究表明:當時,車流速度是車流密度的一次函數(shù).(1)當時,求函數(shù)的表達式;(2)當車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/時)可以達到最大?并求出最大值.19.已知a、b>0且都不為1,函數(shù)f(1)若a=2,b=12,解關(guān)于x的方程(2)若b=2a,是否存在實數(shù)t,使得函數(shù)gx=tx+log2f20.已知集合A={x|x=m2-n2,m∈Z,n∈Z}.求證:(1)3∈A;(2)偶數(shù)4k-2(k∈Z)不屬于A21.已知函數(shù),(1)求函數(shù)的定義域;(2)試討論關(guān)于x的不等式的解集22.已知集合,.(1)求,;(2)若,且,求實數(shù)的取值范圍.
參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】由余弦函數(shù)的定義計算【詳解】由題意到原點的距離為,所以故選:B2、C【解析】先判斷,再判斷得到答案.【詳解】;;;,即故選:【點睛】本題考查了函數(shù)值的大小比較,意在考查學生對于函數(shù)性質(zhì)的靈活運用.3、D【解析】分析:先求對立事件的概率:黑白都沒有的概率,再用1減得結(jié)果.詳解:從袋中球隨機摸個,有,黑白都沒有只有種,則抽到白或黑概率為選點睛:古典概型中基本事件數(shù)的探求方法(1)列舉法.(2)樹狀圖法:適合于較為復雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.4、A【解析】根據(jù)題意,當側(cè)面AA1B1B水平放置時,水的形狀為四棱柱形,由已知條件求出水的體積;當?shù)酌鍭BC水平放置時,水的形狀為三棱柱形,設(shè)水面高為h,故水的體積可以用三角形的面積直接表示出,計算即可得答案【詳解】根據(jù)題意,當側(cè)面AA1B1B水平放置時,水的形狀為四棱柱形,底面是梯形,設(shè)△ABC的面積為S,則S梯形=S,水的體積V水=S×AA1=6S,當?shù)酌鍭BC水平放置時,水的形狀為三棱柱形,設(shè)水面高為h,則有V水=Sh=6S,故h=6故選A【點睛】本題考點是棱柱的體積計算,考查用體積公式來求高,考查轉(zhuǎn)化思想以及計算能力,屬于基礎(chǔ)題5、B【解析】應(yīng)用倍角正余弦公式及商數(shù)關(guān)系將目標式化為,結(jié)合已知即可求值.【詳解】由題意知,,故選:B.6、B【解析】先求出,再求出,最后可求.【詳解】因為,故,因為,故,而,故,所以,故,所以,故選:B7、C【解析】分析:函數(shù)在內(nèi)有且只有一個零點,等價于,有一個根,函數(shù)與只有一個交點,此時,,詳解:,,,,,,,,,,,,,,,令,,,,,,,,,∵零點只有一個,∴函數(shù)與只有一個交點,此時,,.故選C.點睛:函數(shù)的性質(zhì)問題以及函數(shù)零點問題是高考的高頻考點,考生需要對初高中階段學習的十幾種初等函數(shù)的單調(diào)性、奇偶性、周期性以及對稱性非常熟悉;另外,函數(shù)零點的幾種等價形式:函數(shù)有零點函數(shù)在軸有交點方程有根函數(shù)與有交點.8、B【解析】因為G1,G2分別是△SAB和△SAC的重心,所以,所以.又因為M、N分別為AB、AC的中點,所以MN//BC,所以考點:線面平行的判定定理;線面平行的性質(zhì)定理;公理4;重心的性質(zhì)點評:我們要掌握重心性質(zhì):若G1為△SAB的重心,M為AB中點,則9、B【解析】設(shè)出關(guān)于直線對稱點的坐標,利用中點和斜率的關(guān)系列方程組,解方程組求得對稱點的坐標.【詳解】設(shè)關(guān)于直線對稱點的坐標為,線段的中點坐標為,且在直線上,即①.由于直線的斜率為,所以線段的斜率為②.解由①②組成的方程組得,即關(guān)于直線對稱點的坐標為.故選:B【點睛】本小題主要考查點關(guān)于直線的對稱點的坐標的求法,考查方程的思想,屬于基礎(chǔ)題.10、C【解析】根據(jù)分位數(shù)的定義即可求得答案.【詳解】這組數(shù)據(jù)的60%分位數(shù)是.11、B【解析】依題意可得,即,即可得到方程,解得即可;【詳解】:依題意,即,又,所以,即,解得;故選:B12、C【解析】先解出集合A,再根據(jù)確定集合B的元素,可得答案.【詳解】由題意得,,∵,,∴實數(shù)a的取值集合為,故選:C.二、填空題(本大題共4小題,共20分)13、##0.5【解析】首先計算,從而得到,即可得到答案.【詳解】因為,所以.故答案為:14、【解析】首先保證真數(shù)位置在上恒成立,得到的范圍要求,再分和進行討論,由復合函數(shù)的單調(diào)性,得到關(guān)于的不等式,得到答案.【詳解】函數(shù),所以真數(shù)位置上的在上恒成立,由一次函數(shù)保號性可知,,當時,外層函數(shù)為減函數(shù),要使為減函數(shù),則為增函數(shù),所以,即,所以,當時,外層函數(shù)為增函數(shù),要使為減函數(shù),則為減函數(shù),所以,即,所以,綜上可得的范圍為.故答案為.【點睛】本題考查由復合函數(shù)的單調(diào)性,求參數(shù)的范圍,屬于中檔題.15、2【解析】由函數(shù)的解析式可知,∴考點:分段函數(shù)求函數(shù)值點評:對于分段函數(shù),求函數(shù)的關(guān)鍵是要代入到對應(yīng)的函數(shù)解析式中進行求值16、【解析】根據(jù)共線向量的坐標表示,列出方程,即可求解.【詳解】由題意,向量,,因為,可得,解得.故答案為:.三、解答題(本大題共6小題,共70分)17、(1)1;(2)2.【解析】(1)利用對數(shù)的運算性質(zhì)可求得原式=lg10=1;(2)同理可求得原式=2log55=2;【詳解】(1)(2)lg20+log10025【點睛】本題考查對數(shù)的運算性質(zhì),熟練掌握積、商、冪的對數(shù)的運算性質(zhì)是解決問題的關(guān)鍵,屬于中檔題18、(1)(2)車流密度為110輛/千米時,車流量最大,最大值為6050輛/時【解析】(1)根據(jù)題意,當時,設(shè),進而待定系數(shù)得,故;(2)結(jié)合(1)得,再根據(jù)二次函數(shù)模型求最值即可.【小問1詳解】解:當時,設(shè)則,解得:所以【小問2詳解】解:由(1)得,當時,當時,,∴當時,的最大值為∴車流密度為110輛/千米時,車流量最大,最大值為6050輛/時19、(1)x=-(2)存,t=-1【解析】(1)根據(jù)題意可得2x(2)由題意可得gx=tx+log21+2【小問1詳解】因為a=2,b=12,所以方程fx=fx+1化簡得2x=2-x-1,所以【小問2詳解】因為b=2a,故fxgx因為gx是偶函數(shù),故g-x=g而g-x于是tx=-t+1x對任意的實數(shù)x20、(1)見解析;(2)見解析.【解析】(1)由3=22-12即可證得;(2)設(shè)4k-2∈A,則存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,分當m,n同奇或同偶時和當m,n一奇,一偶時兩種情況進行否定即可.試題解析:(1)∵3=22-12,3∈A;(2)設(shè)4k-2∈A,則存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,1、當m,n同奇或同偶時,m-n,m+n均為偶數(shù),∴(m-n)(m+n)為4的倍數(shù),與4k-2不是4的倍數(shù)矛盾2、當m,n一奇,一偶時,m-n,m+n均為奇數(shù),∴(m-n)(m+n)為奇數(shù),與4k-2是偶數(shù)矛盾綜上4k-2不屬于A21、(1)(2)答案見解析【解析】(1)解不等式得出定義域;(2)利用對
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 珍愛生命演講稿500字(29篇)
- 2025辭職申請書(18篇)
- 好書伴我成長主題演講稿(18篇)
- 軟件外包合同集錦(17篇)
- Unit 1 What's the matter Section B 3a-selfcheck 教學設(shè)計 2023-2024學年人教版英語八年級下冊
- 銀行服務(wù)心得體會(19篇)
- 新社工培訓心得總結(jié)(20篇)
- 臨床醫(yī)師試題與答案(二)
- 二年級新學期班主任工作計劃2025(20篇)
- 有關(guān)大學生簡歷自我評價范文(20篇)
- 靜脈留置針常見并發(fā)癥
- 機器人自主導航與地圖構(gòu)建考核試卷
- 吉林銀行總行社會招聘筆試真題2023
- 2024年現(xiàn)場綜合化維護工程師三級認證考試試題及答案
- 西藏拉薩市2025屆高三理綜下學期一模試題
- DL-T+748.8-2021火力發(fā)電廠鍋爐機組檢修導則 第8部分:空氣預熱器檢修
- 《無人機測繪技能訓練模塊》課件-無人機航測影像獲取外業(yè)
- CJJT135-2009 透水水泥混凝土路面技術(shù)規(guī)程
- 營造和諧人際交往含內(nèi)容模板
- SH/T 3224-2024 石油化工雨水監(jiān)控及事故排水儲存設(shè)施設(shè)計規(guī)范(正式版)
- 小學六年級期中考試家長會
評論
0/150
提交評論