廣西貴港市覃塘區(qū)2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第1頁
廣西貴港市覃塘區(qū)2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第2頁
廣西貴港市覃塘區(qū)2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第3頁
廣西貴港市覃塘區(qū)2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第4頁
廣西貴港市覃塘區(qū)2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西貴港市覃塘區(qū)2024屆中考數(shù)學(xué)模擬預(yù)測題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.將拋物線y=-2xA.y=-2(x+1)2C.y=-2(x-1)22.小明在九年級進行的六次數(shù)學(xué)測驗成績?nèi)缦拢▎挝唬悍郑?6、82、91、85、84、85,則這次數(shù)學(xué)測驗成績的眾數(shù)和中位數(shù)分別為()A.91,88 B.85,88 C.85,85 D.85,84.53.定義運算:a?b=2ab.若a,b是方程x2+x-m=0(m>0)的兩個根,則(a+1)?a-(b+1)?b的值為()A.0B.2C.4mD.-4m4.甲隊修路120m與乙隊修路100m所用天數(shù)相同,已知甲隊比乙隊每天多修10m,設(shè)甲隊每天修路xm.依題意,下面所列方程正確的是A.B. C.D.5.小明和小亮按如圖所示的規(guī)則玩一次“錘子、剪刀、布”游戲,下列說法中正確的是()A.小明不是勝就是輸,所以小明勝的概率為 B.小明勝的概率是,所以輸?shù)母怕适荂.兩人出相同手勢的概率為 D.小明勝的概率和小亮勝的概率一樣6.從3、1、-2這三個數(shù)中任取兩個不同的數(shù)作為P點的坐標(biāo),則P點剛好落在第四象限的概率是()A. B. C. D.7.已知二次函數(shù)的圖象如圖所示,若,是這個函數(shù)圖象上的三點,則的大小關(guān)系是()A. B. C. D.8.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.9.計算的結(jié)果為()A.1 B.x C. D.10.研究表明某流感病毒細胞的直徑約為0.00000156m,用科學(xué)記數(shù)法表示這個數(shù)是()A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×106二、填空題(本大題共6個小題,每小題3分,共18分)11.將一副直角三角板如圖放置,使含30°角的三角板的直角邊和含45°角的三角板一條直角邊在同一條直線上,則∠1的度數(shù)為__________12.某市政府為了改善城市容貌,綠化環(huán)境,計劃經(jīng)過兩年時間,使綠地面積增加44%,則這兩年平均綠地面積的增長率為______.13.已知關(guān)于x的一元二次方程mx2+5x+m2﹣2m=0有一個根為0,則m=_____.14.若|a|=2016,則a=___________.15.如圖,從直徑為4cm的圓形紙片中,剪出一個圓心角為90°的扇形OAB,且點O、A、B在圓周上,把它圍成一個圓錐,則圓錐的底面圓的半徑是_____cm.16.若一段弧的半徑為24,所對圓心角為60°,則這段弧長為____.三、解答題(共8題,共72分)17.(8分)在⊙O中,弦AB與弦CD相交于點G,OA⊥CD于點E,過點B作⊙O的切線BF交CD的延長線于點F.(I)如圖①,若∠F=50°,求∠BGF的大?。唬↖I)如圖②,連接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.18.(8分)為了進一步改善環(huán)境,鄭州市今年增加了綠色自行車的數(shù)量,已知A型號的自行車比B型號的自行車的單價低30元,買8輛A型號的自行車與買7輛B型號的自行車所花費用相同.

(1)A,B兩種型號的自行車的單價分別是多少?

(2)若購買A,B兩種自行車共600輛,且A型號自行車的數(shù)量不多于B型號自行車的一半,請你給出一種最省錢的方案,并求出該方案所需要的費用.19.(8分)華聯(lián)超市準備代銷一款運動鞋,每雙的成本是170元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是200元時,每天的銷售量是40雙,而銷售單價每降低1元,每天就可多售出5雙,設(shè)每雙降低x元(x為正整數(shù)),每天的銷售利潤為y元.求y與x的函數(shù)關(guān)系式;每雙運動鞋的售價定為多少元時,每天可獲得最大利潤?最大利潤是多少?20.(8分)如圖,在矩形ABCD中,對角線AC的垂直平分線EF分別交AD、AC、BC于點E、O、F,連接CE和AF.(1)求證:四邊形AECF為菱形;(2)若AB=4,BC=8,求菱形AECF的周長.21.(8分)解方程組22.(10分)如圖,M、N為山兩側(cè)的兩個村莊,為了兩村交通方便,根據(jù)國家的惠民政策,政府決定打一直線涵洞.工程人員為了計算工程量,必須計算M、N兩點之間的直線距離,選擇測量點A、B、C,點B、C分別在AM、AN上,現(xiàn)測得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N兩點之間的距離.23.(12分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉(zhuǎn)90°得線段PQ.(1)當(dāng)點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;(2)當(dāng)AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大??;(3)在點P運動中,當(dāng)以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結(jié)果.24.如圖,分別延長?ABCD的邊到,使,連接EF,分別交于,連結(jié)求證:.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】試題分析:∵拋物線y=-2x2+1向右平移1個單位長度,∴平移后解析式為:y=-2考點:二次函數(shù)圖象與幾何變換.2、D【解題分析】試題分析:根據(jù)眾數(shù)的定義:出現(xiàn)次數(shù)最多的數(shù),中位數(shù)定義:把所有的數(shù)從小到大排列,位置處于中間的數(shù),即可得到答案.眾數(shù)出現(xiàn)次數(shù)最多的數(shù),85出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)是:85,把所有的數(shù)從小到大排列:76,82,84,85,85,91,位置處于中間的數(shù)是:84,85,因此中位數(shù)是:(85+84)÷2=84.5,故選D.考點:眾數(shù),中位數(shù)點評:此題主要考查了眾數(shù)與中位數(shù)的意義,關(guān)鍵是正確把握兩種數(shù)的定義,即可解決問題3、A【解題分析】【分析】由根與系數(shù)的關(guān)系可得a+b=-1然后根據(jù)所給的新定義運算a?b=2ab對式子(a+1)?a-(b+1)?b用新定義運算展開整理后代入進行求解即可.【題目詳解】∵a,b是方程x2+x-m=0(m>0)的兩個根,∴a+b=-1,∵定義運算:a?b=2ab,∴(a+1)?a-(b+1)?b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故選A.【題目點撥】本題考查了一元二次方程根與系數(shù)的關(guān)系,新定義運算等,理解并能運用新定義運算是解題的關(guān)鍵.4、A【解題分析】分析:甲隊每天修路xm,則乙隊每天修(x-10)m,因為甲、乙兩隊所用的天數(shù)相同,所以,。故選A。5、D【解題分析】

利用概率公式,一一判斷即可解決問題.【題目詳解】A、錯誤.小明還有可能是平;B、錯誤、小明勝的概率是

,所以輸?shù)母怕适且彩?;C、錯誤.兩人出相同手勢的概率為;D、正確.小明勝的概率和小亮勝的概率一樣,概率都是;故選D.【題目點撥】本題考查列表法、樹狀圖等知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、B【解題分析】解:畫樹狀圖得:∵共有6種等可能的結(jié)果,其中(1,-2),(3,-2)點落在第四項象限,∴P點剛好落在第四象限的概率==.故選B.點睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,熟記各象限內(nèi)點的符號特點是解題的關(guān)鍵.7、A【解題分析】

先求出二次函數(shù)的對稱軸,結(jié)合二次函數(shù)的增減性即可判斷.【題目詳解】解:二次函數(shù)的對稱軸為直線,∵拋物線開口向下,∴當(dāng)時,y隨x增大而增大,∵,∴故答案為:A.【題目點撥】本題考查了根據(jù)自變量的大小,比較函數(shù)值的大小,解題的關(guān)鍵是熟悉二次函數(shù)的增減性.8、A【解題分析】分析:連接OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質(zhì)得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據(jù)切線的性質(zhì)得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規(guī)律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關(guān)系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.9、A【解題分析】

根據(jù)同分母分式的加減運算法則計算可得.【題目詳解】原式===1,故選:A.【題目點撥】本題主要考查分式的加減法,解題的關(guān)鍵是掌握同分母分式的加減運算法則.10、C【解題分析】解:,故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、75°【解題分析】

先根據(jù)同旁內(nèi)角互補,兩直線平行得出AC∥DF,再根據(jù)兩直線平行內(nèi)錯角相等得出∠2=∠A=45°,然后根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠1的度數(shù).【題目詳解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案為:75°.【題目點撥】本題考查了平行線的判定與性質(zhì),三角形外角的性質(zhì),求出∠2=∠A=45°是解題的關(guān)鍵.12、10%【解題分析】

本題可設(shè)這兩年平均每年的增長率為x,因為經(jīng)過兩年時間,讓市區(qū)綠地面積增加44%,則有(1+x)1=1+44%,解這個方程即可求出答案.【題目詳解】解:設(shè)這兩年平均每年的綠地增長率為x,根據(jù)題意得,

(1+x)1=1+44%,

解得x1=-1.1(舍去),x1=0.1.

答:這兩年平均每年綠地面積的增長率為10%.故答案為10%【題目點撥】此題考查增長率的問題,一般公式為:原來的量×(1±x)1=現(xiàn)在的量,增長用+,減少用-.但要注意解的取舍,及每一次增長的基礎(chǔ).13、1【解題分析】【分析】根據(jù)一元二次方程的定義以及一元二次方程的解的定義列出關(guān)于m的方程,通過解關(guān)于m的方程求得m的值即可.【題目詳解】∵關(guān)于x的一元二次方程mx1+5x+m1﹣1m=0有一個根為0,∴m1﹣1m=0且m≠0,解得,m=1,故答案是:1.【題目點撥】本題考查了一元二次方程ax1+bx+c=0(a≠0)的解的定義.解答該題時需注意二次項系數(shù)a≠0這一條件.14、±1【解題分析】試題分析:根據(jù)零指數(shù)冪的性質(zhì)(),可知|a|=1,座椅可知a=±1.15、【解題分析】

設(shè)圓錐的底面圓的半徑為r,由于∠AOB=90°得到AB為圓形紙片的直徑,則OB=cm,根據(jù)弧長公式計算出扇形OAB的弧AB的長,然后根據(jù)圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長進行計算.【題目詳解】解:設(shè)圓錐的底面圓的半徑為r,連結(jié)AB,如圖,∵扇形OAB的圓心角為90°,∴∠AOB=90°,∴AB為圓形紙片的直徑,∴AB=4cm,∴OB=cm,∴扇形OAB的弧AB的長=π,∴2πr=π,∴r=(cm).故答案為.【題目點撥】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長,扇形的半徑等于圓錐的母線長.也考查了圓周角定理和弧長公式.16、8π【解題分析】試題分析:∵弧的半徑為24,所對圓心角為60°,∴弧長為l==8π.故答案為8π.【考點】弧長的計算.三、解答題(共8題,共72分)17、(I)65°;(II)72°【解題分析】

(I)如圖①,連接OB,先利用切線的性質(zhì)得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四邊形內(nèi)角和可計算出∠AOB=130°,然后根據(jù)等腰三角形性質(zhì)和三角形內(nèi)角和計算出∠1=∠A=25°,從而得到∠2=65°,最后利用三角形內(nèi)角和定理計算∠BGF的度數(shù);(II)如圖②,連接OB,BO的延長線交AC于H,利用切線的性質(zhì)得OB⊥BF,再利用AC∥BF得到BH⊥AC,與(Ⅰ)方法可得到∠AOB=144°,從而得到∠OBA=∠OAB=18°,接著計算出∠OAH=54°,然后根據(jù)圓周角定理得到∠BDG的度數(shù).【題目詳解】解:(I)如圖①,連接OB,∵BF為⊙O的切線,∴OB⊥BF,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如圖②,連接OB,BO的延長線交AC于H,∵BF為⊙O的切線,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,與(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=54°,∴∠BAC=∠OAH+∠OAB=54°+18°=72°,∴∠BDG=∠BAC=72°.【題目點撥】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了圓周角定理.18、(1)A型自行車的單價為210元,B型自行車的單價為240元.(2)最省錢的方案是購買A型自行車200輛,B型自行車的400輛,總費用為138000元.【解題分析】分析:(1)設(shè)A型自行車的單價為x元,B型自行車的單價為y元,構(gòu)建方程組即可解決問題.(2)設(shè)購買A型自行車a輛,B型自行車的(600-a)輛.總費用為w元.構(gòu)建一次函數(shù),利用一次函數(shù)的性質(zhì)即可解決問題.詳解:(1)設(shè)A型自行車的單價為x元,B型自行車的單價為y元,

由題意,

解得,

型自行車的單價為210元,B型自行車的單價為240元.

(2)設(shè)購買A型自行車a輛,B型自行車的輛.總費用為w元.

由題意,

,

隨a的增大而減小,

,

,

∴當(dāng)時,w有最小值,最小值,

∴最省錢的方案是購買A型自行車200輛,B型自行車的400輛,總費用為138000元.點睛:本題考查一次函數(shù)的應(yīng)用,二元一次方程組的應(yīng)用等知識,解題的關(guān)鍵是學(xué)會設(shè)未知數(shù),構(gòu)建方程組或一次函數(shù)解決實際問題,屬于中考??碱}型.19、(1)y=﹣5x2+110x+1200;(2)售價定為189元,利潤最大1805元【解題分析】

利潤等于(售價﹣成本)×銷售量,根據(jù)題意列出表達式,借助二次函數(shù)的性質(zhì)求最大值即可;【題目詳解】(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,∵拋物線開口向下,∴當(dāng)x=11時,y有最大值1805,答:售價定為189元,利潤最大1805元;【題目點撥】本題考查實際應(yīng)用中利潤的求法,二次函數(shù)的應(yīng)用;能夠根據(jù)題意列出合理的表達式是解題的關(guān)鍵.20、(1)見解析;(2)1【解題分析】

(1)根據(jù)ASA推出:△AEO≌△CFO;根據(jù)全等得出OE=OF,推出四邊形是平行四邊形,再根據(jù)EF⊥AC即可推出四邊形是菱形;(2)根據(jù)線段垂直平分線性質(zhì)得出AF=CF,設(shè)AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到結(jié)論.【題目詳解】(1)∵EF是AC的垂直平分線,∴AO=OC,∠AOE=∠COF=90°.∵四邊形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴平行四邊形AECF是菱形;(2)設(shè)AF=x.∵EF是AC的垂直平分線,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周長為1.【題目點撥】本題考查了勾股定理,矩形性質(zhì),平行四邊形的判定,菱形的判定,全等三角形的性質(zhì)和判定,平行線的性質(zhì)等知識點的綜合運用,用了方程思想.21、【解題分析】

將②×3,再聯(lián)立①②消未知數(shù)即可計算.【題目詳解】解:②得:③①+③得:把代入③得∴方程組的解為【題目點撥】本題考查二元一次方程組解法,關(guān)鍵是掌握消元法.22、1.5千米【解題分析】

先根據(jù)相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性質(zhì)解答即可【題目詳解】在△ABC與△AMN中,,,∴,∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得MN=1.5(千米),因此,M、N兩點之間的直線距離是1.5千米.【題目點撥】此題考查相似三角形的應(yīng)用,解題關(guān)鍵在于掌握運算法則23、(1)45,,π;(2)滿足條件的∠QQ0D為45°或135°;(3)BP的長為或;(4)≤CQ≤7.【解題分析】

(1)由已知,可知△APQ為等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的長度;(2)分點Q在BD上方和下方的情況討論求解即可.(3)分別討論點Q在BD上方和下方的情況,利用切線性質(zhì),在由(2)用BP0表示BP,由射影定理計算即可;(4)由(2)可知,點Q在過點Qo,且與BD夾角為45°的線段EF上運動,有圖形可知,當(dāng)點Q運動到點E時,CQ最長為7,再由垂線段最短,應(yīng)用面積法求CQ最小值.【題目詳解】解:(1)如圖,過點P做PE⊥AD于點E由已知,AP=PQ,∠APQ=90°∴△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論