版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆甘肅省武威市第一中高一數(shù)學第一學期期末復習檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.圓:與圓:的位置關(guān)系是A.相交 B.相離C.外切 D.內(nèi)切2.已知,求的值()A. B.C. D.3.已知函數(shù)(,且)在上單調(diào)遞減,且關(guān)于x的方程恰有兩個不相等的實數(shù)解,則的取值范圍是A. B.[,]C.[,]{} D.[,){}4.青少年視力是社會普遍關(guān)注的問題,視力情況可借助視力表測量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),小數(shù)記錄法的數(shù)據(jù)V和五分記錄法的數(shù)據(jù)L滿足,已知某同學視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)約為()(注:)A.0.6 B.0.8C.1.2 D.1.55.若動點.分別在直線和上移動,則線段的中點到原點的距離的最小值為()A. B.C. D.6.命題:的否定為()A. B.C. D.7.已知函數(shù),則的最大值為()A. B.C. D.8.函數(shù)圖象的一條對稱軸是A. B.x=πC. D.x=2π9.已知函數(shù),則函數(shù)()A.有最小值 B.有最大值C.有最大值 D.沒有最值10.若角的終邊過點,則A. B.C. D.11.已知函數(shù)部分圖象如圖所示,則A. B.C. D.12.中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學的“對稱美”.如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分體現(xiàn)了相互變化、對稱統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)A(為坐標原點)的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”.給出下列命題:①對于任意一個圓,其“優(yōu)美函數(shù)”有無數(shù)個;②函數(shù)可以是某個圓的“優(yōu)美函數(shù)”;③正弦函數(shù)可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;④函數(shù)是“優(yōu)美函數(shù)”的充要條件為函數(shù)的圖象是中心對稱圖形A.①④ B.①③④C.②③ D.①③二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知集合,若集合A有且僅有2個子集,則a的取值構(gòu)成的集合為________.14.若,則的值為___________.15.已知函數(shù)的圖象過原點,且無限接近直線,但又不與該直線相交,則______16.若函數(shù)在上單調(diào)遞增,則a的取值范圍為______三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.求值或化簡:(1);(2).18.已知函數(shù),其中.(1)當時,求的值域和單調(diào)區(qū)間;(2)若存在單調(diào)遞增區(qū)間,求a的取值范圍.19.已知方程x2+y2-2x-4y+m=0(1)若此方程表示圓,求m的取值范圍;(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點,且OM⊥ON(O為坐標原點),求m;(3)在(2)的條件下,求以MN為直徑的圓的方程20.已知圓M與x軸相切于點(a,0),與y軸相切于點(0,a),且圓心M在直線上.過點P(2,1)直線與圓M交于兩點,點C是圓M上的動點.(1)求圓M的方程;(2)若直線AB的斜率不存在,求△ABC面積的最大值;(3)是否存在弦AB被點P平分?若存在,求出直線AB的方程;若不存在,說明理由.21.2009年某市某地段商業(yè)用地價格為每畝60萬元,由于土地價格持續(xù)上漲,到2021年已經(jīng)上漲到每畝120萬元.現(xiàn)給出兩種地價增長方式,其中是按直線上升的地價,是按對數(shù)增長的地價,t是2009年以來經(jīng)過的年數(shù),2009年對應(yīng)的t值為0(1)求,的解析式;(2)2021年開始,國家出臺“穩(wěn)定土地價格”的相關(guān)調(diào)控政策,為此,該市要求2025年的地價相對于2021年上漲幅度控制在10%以內(nèi),請分析比較以上兩種增長方式,確定出最合適的一種模型.(參考數(shù)據(jù):)22.已知集合,.(1)當時,求;(2)若,求實數(shù)的取值范圍.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】求出兩圓的圓心和半徑,用圓心距與半徑和、差作比較,得出結(jié)論.【詳解】圓的圓心為(1,0),半徑為1,圓的圓心為(0,2),半徑為2,故兩圓圓心距為,兩半徑之和為3,兩半徑之差為1,其中,故兩圓相交,故選:A.【點睛】本題主要考查兩圓的位置關(guān)系,需要學生熟悉兩圓位置的五種情形及其判定方法,屬于基礎(chǔ)題.2、A【解析】利用同角三角函數(shù)的基本關(guān)系,即可得到答案;【詳解】,故選:A3、C【解析】由在上單調(diào)遞減可知,由方程恰好有兩個不相等的實數(shù)解,可知,,又時,拋物線與直線相切,也符合題意,∴實數(shù)的取值范圍是,故選C.【考點】函數(shù)性質(zhì)綜合應(yīng)用【名師點睛】已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路:(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解4、B【解析】當時,即可得到答案.【詳解】由題意可得當時故選:B5、C【解析】先分析出M的軌跡,再求到原點的距離的最小值.【詳解】由題意可知:M點的軌跡為平行于直線和且到、距離相等的直線l,故其方程為:,故到原點的距離的最小值為.故選:C【點睛】解析幾何中與動點有關(guān)的最值問題一般的求解思路:①幾何法:利用圖形作出對應(yīng)的線段,利用幾何法求最值;②代數(shù)法:把待求量的函數(shù)表示出來,利用函數(shù)求最值.6、B【解析】根據(jù)全稱命題的否定是特稱命題判斷可得.【詳解】解:命題:為全稱量詞命題,其否定為;故選:B7、D【解析】令,可得出,令,證明出函數(shù)在上為減函數(shù),在上為增函數(shù),由此可求得函數(shù)在區(qū)間上的最大值,即為所求.【詳解】令,則,則,令,下面證明函數(shù)在上為減函數(shù),在上為增函數(shù),任取、且,則,,則,,,,所以,函數(shù)在區(qū)間上為減函數(shù),同理可證函數(shù)在區(qū)間上為增函數(shù),,,.因此,函數(shù)的最大值為.故選:D.【點睛】方法點睛:利用函數(shù)的單調(diào)性求函數(shù)最值的基本步驟如下:(1)判斷或證明函數(shù)在區(qū)間上的單調(diào)性;(2)利用函數(shù)的單調(diào)性求得函數(shù)在區(qū)間上的最值.8、C【解析】利用函數(shù)值是否是最值,判斷函數(shù)的對稱軸即可【詳解】當x時,函數(shù)cos2π=1,函數(shù)取得最大值,所以x是函數(shù)的一條對稱軸故選C【點睛】對于函數(shù)由可得對稱軸方程,由可得對稱中心橫坐標.9、B【解析】換元法后用基本不等式進行求解.【詳解】令,則,因為,,故,當且僅當,即時等號成立,故函數(shù)有最大值,由對勾函數(shù)的性質(zhì)可得函數(shù),即有最小值.故選:B10、D【解析】角的終邊過點,所以.由角,得.故選D.11、C【解析】由圖可以得到周期,然后利用周期公式求,再將特殊點代入即可求得的表達式,結(jié)合的范圍即可確定的值.【詳解】由圖可知,,則,所以,則.將點代入得,即,解得,因為,所以.答案為C.【點睛】已知圖像求函數(shù)解析式的問題:(1):一般由圖像求出周期,然后利用公式求解.(2):一般根據(jù)圖像的最大值或者最小值即可求得.(3):一般將已知點代入即可求得.12、D【解析】根據(jù)定義分析,優(yōu)美函數(shù)具備的特征是,函數(shù)關(guān)于圓心(即坐標原點)呈中心對稱.【詳解】對①,中心對稱圖形有無數(shù)個,①正確對②,函數(shù)是偶函數(shù),不關(guān)于原點成中心對稱.②錯誤對③,正弦函數(shù)關(guān)于原點成中心對稱圖形,③正確.對④,充要條件應(yīng)該是關(guān)于原點成中心對稱圖形,④錯誤故選D【點睛】仔細閱讀新定義問題,理解定義中優(yōu)美函數(shù)的含義,找到中心對稱圖形,即可判斷各項正誤.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】由題意得出方程有唯一實數(shù)解或有兩個相等的實數(shù)解,然后討論并求解當和時滿足題意的參數(shù)的值.【詳解】∵集合A有且僅有2個子集,可得A中僅有一個元素,即方程僅有一個實數(shù)解或有兩個相等的實數(shù)解.當時,方程化為,∴,此時,符合題意;當時,則由,,令時解方程得,此時,符合題意,令時解方程得,此時符合題意;綜上可得滿足題意的參數(shù)可能的取值有0,-1,1,∴a的取值構(gòu)成的集合為.故答案為:.【點睛】本題考查了由集合子集的個數(shù)求參數(shù)的問題,考查了分類討論思想,屬于一般難度的題.14、1或【解析】由誘導公式、二倍角公式變形計算【詳解】,所以或,時,;時,故答案為:1或15、##0.75【解析】根據(jù)條件求出,,再代入即可求解.【詳解】因為的圖象過原點,所以,即.又因為的圖象無限接近直線,但又不與該直線相交,所以,,所以,所以故答案為:16、【解析】根據(jù)函數(shù)的單調(diào)性得到,計算得到答案.【詳解】函數(shù)在上單調(diào)遞增,則故答案為:【點睛】本題考查了函數(shù)的單調(diào)性,意在考查學生的計算能力.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)18;(2).【解析】(1)利用對數(shù)的運算性質(zhì)即可得出;(2)利用指數(shù)冪和對數(shù)的運算法則即可得出.試題解析:(1)(2)====18、(1)見解析(2)【解析】(1)利用換元法設(shè),求出的范圍,再由對數(shù)函數(shù)的性質(zhì)得出值域,再結(jié)合復合函數(shù)的單調(diào)性得出的單調(diào)區(qū)間;(2)分別討論,兩種情況,結(jié)合復合函數(shù)的單調(diào)性以及二次函數(shù)的性質(zhì)得出a的取值范圍.【詳解】(1)當時,設(shè),由,解得即函數(shù)的定義域為,此時則,即的值域為要求單調(diào)增(減)區(qū)間,等價于求的增(減)區(qū)間在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減(2)當時,存在單調(diào)遞增區(qū)間,則函數(shù)存在單調(diào)遞增區(qū)間則判別式,解得或(舍)當時,存在單調(diào)遞增區(qū)間,則函數(shù)存在單調(diào)遞減區(qū)間則判別式,解得或,此時不成立綜上,a的取值范圍為【點睛】關(guān)鍵點睛:本題主要考查了對數(shù)型復合函數(shù)的單調(diào)性問題,解題的關(guān)鍵在于利用復合函數(shù)單調(diào)性的性質(zhì)進行求解.19、(1)m<5;(2);(3)【解析】詳解】(1)由,得:,,;(2)由題意,把代入,得,,,∵得出:,∴,∴;(3)圓心為,,半徑,圓的方程.考點:直線與圓的位置關(guān)系.20、(1)(2)(3)存在,方程為【解析】(1)根據(jù)圓與坐標軸相切表示出圓心坐標,結(jié)合已知可解;(2)注意到當點C到直線AB距離最大值為圓心到直線距離加半徑,然后可解;(3)根據(jù)圓心與弦的中點的連線垂直弦,或利用點差法可得.【小問1詳解】∵圓M與x軸相切于點(a,0),與y軸相切于點(0,a),∴圓M的圓心為M(a,a),半徑.又圓心M在直線上,∴,解得.∴圓M的方程為:.【小問2詳解】當直線AB的斜率不存在時,直線AB的方程為,∴由,解得.∴.易知圓心M到直線AB的距離,∴點C到直線AB的最大距離為.∴△ABC面積的最大值為.【小問3詳解】方法一:假設(shè)存在弦AB被點P平分,即P為AB的中點.又∵,∴.又∵直線MP的斜率為,∴直線AB的斜率為-.∴.∴存在直線AB的方程為時,弦AB被點P平分.方法二:由(2)易知當直線AB的斜率不存在時,,∴此時點P不平分AB.當直線AB的斜率存在時,,假設(shè)點P平分弦AB.∵點A、B是圓M上的點,設(shè),.∴由點差法得.由點P是弦AB的中點,可得,∴.∴∴存在直線AB的方程為時,弦AB被點P平分.21、(1),;,(2)分析比較見解析;應(yīng)該選擇模型【解析】(1)由,求得;由,求得;(2)分別由,,,算出直線和對數(shù)增長的增
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版品德與社會五年級上冊全冊教案
- 開發(fā)耐低溫材料保障極地工程安全
- 現(xiàn)代工程圖學習題集答案-第三版-主編楊裕根第3章
- 高一化學達標訓練:第一單元化學反應(yīng)速率與反應(yīng)限度
- 2024屆西安市航空六一八中學高考化學四模試卷含解析
- 2024高中語文第一單元第2課裝在套子里的人提升訓練含解析新人教版必修5
- 2024高考地理一輪復習第二章地球上的大氣第三講氣壓帶和風帶學案
- 2024高考化學一輪復習第九章有機化合物第一講甲烷乙烯苯規(guī)范演練含解析新人教版
- 貸款違約調(diào)解協(xié)議書
- 大數(shù)據(jù)時代語言學
- 內(nèi)科胃癌護理查房
- 2024年廣東省公務(wù)員錄用考試《行測》試題及答案解析
- 蔣詩萌小品《誰殺死了周日》臺詞完整版
- 生涯發(fā)展展示
- 報價單(報價單模板)
- 2023年財務(wù)內(nèi)控管理模板
- 【家庭自制】 南北香腸配方及28種制作方法
- 電梯調(diào)度問題模型(共3頁)
- 廠房施工總結(jié)報告
- 公務(wù)員職務(wù)和級別工資檔次套改及級別對應(yīng)表
- GB∕T 41010-2021 生物降解塑料與制品降解性能及標識要求
評論
0/150
提交評論