2023-2024學(xué)年湖北省孝感一中高一上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第1頁
2023-2024學(xué)年湖北省孝感一中高一上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第2頁
2023-2024學(xué)年湖北省孝感一中高一上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第3頁
2023-2024學(xué)年湖北省孝感一中高一上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第4頁
2023-2024學(xué)年湖北省孝感一中高一上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年湖北省孝感一中高一上數(shù)學(xué)期末質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.函數(shù)的定義域是A. B.C. D.2.若向量=,||=2,若·(-)=2,則向量與的夾角()A. B.C. D.3.如圖,在正四棱柱中,,點為棱的中點,過,,三點的平面截正四棱柱所得的截面面積為()A.2 B.C. D.4.設(shè),,,則的大小關(guān)系是()A. B.C. D.5.函數(shù)的最小正周期是()A.1 B.2C. D.6.小敏打開計算機時,忘記了開機密碼的前兩位,只記得第一位是中的一個字母,第二位是1,2,3,4,5中的一個數(shù)字,則小敏輸入一次密碼能夠成功開機的概率是A. B.C. D.7.我國南宋時期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書九章》中獨立提出了一種求三角形面積的方法“三斜求積術(shù)”,即的面積,其中分別為的內(nèi)角的對邊,若,且,則的面積的最大值為()A. B.C. D.8.已知,,,則,,三者的大小關(guān)系是()A. B.C. D.9.已知函數(shù)的圖像中相鄰兩條對稱軸之間的距離為,當(dāng)時,函數(shù)取到最大值,則A.函數(shù)的最小正周期為 B.函數(shù)的圖像關(guān)于對稱C.函數(shù)的圖像關(guān)于對稱 D.函數(shù)在上單調(diào)遞減10.已知集合A∪B={0,1,2,3,4},B={1,2,4},那么集合A可能是()A.{1,2,3} B.{0,1,4}C.{0,1,3} D.{1,3,4}二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.已知,寫出一個滿足條件的的值:______12.函數(shù)的圖象為,以下結(jié)論中正確的是______(寫出所有正確結(jié)論的編號).①圖象關(guān)于直線對稱;②圖象關(guān)于點對稱;③由的圖象向右平移個單位長度可以得到圖象;④函數(shù)在區(qū)間內(nèi)是增函數(shù).13.若函數(shù)在區(qū)間上是增函數(shù),則實數(shù)取值范圍是______14.已知函數(shù),,其中表示不超過x的最大整數(shù).例如:,,.①______;②若對任意都成立,則實數(shù)m的取值范圍是______15.已知集合(1)當(dāng)時,求的非空真子集的個數(shù);(2)當(dāng)時,若,求實數(shù)的取值范圍三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.是否存在銳角,使得:,同時成立?若存在,求出銳角的值;若不存在,說明理由.17.已知函數(shù),(1)求證:為奇函數(shù);(2)若恒成立,求實數(shù)的取值范圍;(3)解關(guān)于的不等式18.已知,.(1)求的值;(2)求的值.19.已知函數(shù)(1)求的最大值,并寫出取得最大值時自變量的集合;(2)把曲線向左平移個單位長度,然后使曲線上各點的橫坐標(biāo)變?yōu)樵瓉淼谋叮v坐標(biāo)不變),得到函數(shù)的圖象,求在上的單調(diào)遞增區(qū)間.20.我們知道,指數(shù)函數(shù)(,且)與對數(shù)函數(shù)(,且)互為反函數(shù).已知函數(shù),其反函數(shù)為.(1)求函數(shù),的最小值;(2)對于函數(shù),若定義域內(nèi)存在實數(shù),滿足,則稱為“L函數(shù)”.已知函數(shù)為其定義域上的“L函數(shù)”,求實數(shù)的取值范圍.21.如圖,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,點E和F分別為BC和A1C的中點(1)求證:EF∥平面A1B1BA;(2)求直線A1B1與平面BCB1所成角的大小.

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、D【解析】由,求得的取值集合得答案詳解】解:由,得,函數(shù)定義域是故選:D【點睛】本題考查函數(shù)的定義域及其求法,關(guān)鍵是明確正切函數(shù)的定義域,屬于基礎(chǔ)題2、A【解析】利用向量模的坐標(biāo)求法可得,再利用向量數(shù)量積求夾角即可求解.【詳解】由已知可得:,得,設(shè)向量與的夾角為,則所以向量與的夾角為故選:A.【點睛】本題考查了利用向量數(shù)量積求夾角、向量模的坐標(biāo)求法,屬于基礎(chǔ)題.3、D【解析】根據(jù)題意畫出截面,得到截面為菱形,從而可求出截面的面積.【詳解】取的中點,的中點,連接,因為該幾何體為正四棱柱,∴故四邊形為平行四邊形,所以,又,∴,同理,且,所以過,,三點平面截正四棱柱所得的截面為菱形,所以該菱形的面積為.故選:D4、C【解析】根據(jù)對數(shù)函數(shù)和冪函數(shù)單調(diào)性可比較出大小關(guān)系.【詳解】,;,,,即,又,.故選:C.5、A【解析】根據(jù)余弦函數(shù)的性質(zhì)計算可得;【詳解】因為,所以函數(shù)的最小正周期;故選:A6、C【解析】開機密碼的可能有,,共15種可能,所以小敏輸入一次密碼能夠成功開機的概率是,故選C【考點】古典概型【解題反思】對古典概型必須明確兩點:①對于每個隨機試驗來說,試驗中所有可能出現(xiàn)基本事件只有有限個;②每個基本事件出現(xiàn)的可能性相等.只有在同時滿足①、②的條件下,運用的古典概型計算公式(其中n是基本事件的總數(shù),m是事件A包含的基本事件的個數(shù))得出的結(jié)果才是正確的7、A【解析】先根據(jù)求出關(guān)系,代入面積公式,利用二次函數(shù)的知識求解最值.【詳解】因為,所以,即;由正弦定理可得,所以;當(dāng)時,取到最大值.故選:A.8、C【解析】分別求出,,的范圍,即可比較大小.【詳解】因為在上單調(diào)遞增,所以,即,因為在上單調(diào)遞減,所以,即,因為在單調(diào)遞增,所以,即,所以,故選:C9、D【解析】由相鄰對稱軸之間的距離,得函數(shù)的最小正周期,求得,再根據(jù)當(dāng)時,函數(shù)取到最大值求得,對函數(shù)的性質(zhì)進(jìn)行判斷,可選出正確選項【詳解】因為函數(shù)的圖像中相鄰兩條對稱軸之間的距離為,所以,函數(shù)的最小正周期,所以,又因為當(dāng)時,函數(shù)取到最大值,所以,,因為,所以,,函數(shù)最小正周期,A錯誤;函數(shù)圖像的對稱軸方程為,,B錯誤;函數(shù)圖像的對稱中心為,,C錯誤;所以選擇D【點睛】由的圖像求函數(shù)的解析式時,由函數(shù)的最大值和最小值求得,由函數(shù)的周期求得,代值進(jìn)函數(shù)解析式可求得的值10、C【解析】根據(jù)并集的定義可得集合A中一定包含的元素,再對選項進(jìn)行排除,可得答案.【詳解】∵集合A∪B={0,1,2,3,4},B={1,2,4};∴集合A中一定有元素0和3,故可排除A,B,D;故選:C.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、(答案不唯一)【解析】利用,可得,,計算即可得出結(jié)果.【詳解】因為,所以,則,或,故答案為:(答案不唯一)12、①②④【解析】利用整體代入的方式求出對稱中心和對稱軸,分析單調(diào)區(qū)間,利用函數(shù)的平移方式檢驗平移后的圖象.【詳解】由題意,,令,,當(dāng)時,即函數(shù)的一條對稱軸,所以①正確;令,,當(dāng)時,,所以是函數(shù)的一個對稱中心,所以②正確;當(dāng),,在區(qū)間內(nèi)是增函數(shù),所以④正確;的圖象向右平移個單位長度得到,與函數(shù)不相等,所以③錯誤.故答案為:①②④.13、【解析】令,由題設(shè)易知在上為增函數(shù),根據(jù)二次函數(shù)的性質(zhì)列不等式組求的取值范圍.【詳解】由題設(shè),令,而為增函數(shù),∴要使在上是增函數(shù),即在上為增函數(shù),∴或,可得或,∴的取值范圍是.故答案為:14、①.②.【解析】①代入,由函數(shù)的定義計算可得答案;②分別計算時,時,時,時,時,時,時,的值,建立不等式,求解即可【詳解】解:①∵,∴②當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,又對任意都成立,即恒成立,∴,∴,∴實數(shù)m的取值范圍是故答案為:;.【點睛】關(guān)鍵點睛:本題考查函數(shù)的新定義,關(guān)鍵在于理解函數(shù)的定義,分段求值,建立不等式求解.15、(1)30(2)或【解析】(1)當(dāng)時,可得中元素的個數(shù),進(jìn)而可得的非空真子集的個數(shù);(2)根據(jù),可分和兩種情況討論,可得出實數(shù)的取值范圍【小問1詳解】當(dāng)時,,共有5個元素,所以的非空真子集的個數(shù)為【小問2詳解】(1)當(dāng)時,,解得;(2)當(dāng)時,根據(jù)題意作出如圖所示的數(shù)軸,可得或解得:或綜上可得,實數(shù)的取值范圍是或三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、存在,【解析】利用兩角和的正切公式可得,結(jié)合可求及,求出后可得的值.【詳解】假設(shè)存在銳角使得,同時成立.得,所以.又因為,所以.因此可以看成是方程的兩個根.解該方程得.若,則.這與為銳角矛盾.所以,故,因為為銳角,所以.所以滿足條件的存在,且.【點睛】三角方程的求解的基本方法是消元法,也可以利用三角變換公式把三角方程化簡為角的三角函數(shù)的方程,求出它們的值后可得角的大小,化簡三角方程時要關(guān)注三角方程的結(jié)構(gòu)形式便于找到合理的三角變換方法.17、(1)證明見解析(2)(3)【解析】(1)求得的定義域,計算,與比較可得;(2)原不等式等價為對恒成立,運用基本不等式可得最小值,進(jìn)而得到所求范圍;(3)原不等式等價為,設(shè),判斷其單調(diào)性可得的不等式,即可求出.【小問1詳解】函數(shù),由解得或,可得定義域,關(guān)于原點對稱,因為,所以是奇函數(shù);【小問2詳解】由或,解得,所以恒成立,即,則,即對恒成立,因為,當(dāng)且僅當(dāng),即時等號成立,所以,即的取值范圍為;【小問3詳解】不等式即為,設(shè),即,可得在上遞減,所以,則,解得,所以不等式的解集為.18、(1);(2).【解析】(1)利用誘導(dǎo)公式直接化簡即可,然后弦化切;(2)由(1)知,,對齊次式進(jìn)行弦化切求值.【詳解】(1)∵而,∴∵,∴,∴,∴.(2)..【點睛】利用三角公式求三角函數(shù)值的關(guān)鍵:(1)角的范圍的判斷;(2)選擇合適的公式進(jìn)行化簡求值19、(1)的最大值,(2)【解析】(1)根據(jù)的范圍可得的范圍,可得的最大值及取得最大值時自變量的集合;(2)由圖象平移規(guī)律可得,結(jié)合的范圍和正弦曲線的單調(diào)性可得答案.【小問1詳解】因為,所以,所以,當(dāng)即時的最大值,所以取得最大值時自變量的集合是.【小問2詳解】因為把曲線向左平移個單位長度,然后使曲線上各點的橫坐標(biāo)變?yōu)樵瓉淼谋叮v坐標(biāo)不變),得到函數(shù)的圖象,所以.因為,所以.因為正弦曲線在上的單調(diào)遞增區(qū)間是,所以,所以.所以在上的單調(diào)遞增區(qū)間是.20、(1)答案見解析(2)【解析】(1)利用換元法令,可得所求為關(guān)于p的二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),分析討論,即可得答案.(2)根據(jù)題意,分別討論在、和上存在實數(shù),滿足題意,根據(jù)所給方程,代入計算,結(jié)合函數(shù)單調(diào)性,分析即可得答案.【小問1詳解】由題意得所以,,令,設(shè)則為開口向上,對稱軸為的拋物線,當(dāng)時,在上為單調(diào)遞增函數(shù),所以的最小值為;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為;當(dāng)時,在上為單調(diào)遞減函數(shù),所以的最小值為;綜上,當(dāng)時,的最小值為,當(dāng)時,的最小值為,當(dāng)時,的最小值為【小問2詳解】①設(shè)在上存在,滿足,則,令,則,當(dāng)且僅當(dāng)時取等號,又,所以,即,所以,所以所以②設(shè)存在,滿足,則,即有解,因為在上單調(diào)遞減,所以,同理當(dāng)在存在,滿足時,解得,所以實數(shù)的取值范圍【點睛】解題的關(guān)鍵是理解新定義,并根據(jù)所給定義,代入計算,結(jié)合函數(shù)單調(diào)性及函數(shù)存在性思想,進(jìn)行求解,屬難題21、(1)詳見解析(2)30°【解析】(1)連接A1B,結(jié)合三角形中位線定理,得到平行,結(jié)合直線與平面平行,的判定定理,即可.(2)取的中點N,連接,利用直線與平面垂直判定定理,得到平面,找出即為所求的角,解三角形,計算該角的大小,即可【詳解】解:(1)證明:如圖,連接A1B.在△A1BC中,因為E和F分別是BC和A1C的中點,所以EF∥BA1.又EF?平面A1B1BA,所以EF∥平面A1B1BA(2)解:因為AB=AC,E為BC的中點,所以AE⊥BC.因為AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,從而BB1⊥AE.又BC∩BB1=B,所以AE⊥平面BCB1,.取BB1的中點M和B1C的中點N,連接A1M,A1N,NE.因為N和E分別為B1C和BC的中點,所以NE∥B1B,NE=B1B,故NE∥A1A且NE=A1A,所以A1N∥AE,且A1N=AE.因為AE⊥平面BCB1,所以A1N⊥平面BCB1,從而∠A1B1N為直線A1B1與平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論