版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年山東省淄博市淄川中學數(shù)學高一上期末質(zhì)量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,共60分)1.函數(shù)f(x)=sin(x+)+cos(x-)的最大值是()A. B.C.1 D.2.已知集合,,則集合A. B.C. D.3.已知集合,,則集合()A. B.C. D.4.在底面為正方形的四棱錐中,側面底面,,,則異面直線與所成的角為()A. B.C. D.5.函數(shù)的圖象大致為()A. B.C. D.6.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,將角的終邊按順時針方向旋轉后經(jīng)過點,則()A. B.C. D.7.設,,,則a,b,c的大小關系是A. B.C. D.8.設則的值A.9 B.C.27 D.9.已知為定義在上的偶函數(shù),,且當時,單調(diào)遞增,則不等式的解集為()A. B.C. D.10.函數(shù)f(x)=的定義域為A.[1,3)∪(3,+∞) B.(1,+∞)C.[1,2) D.[1,+∞)11.定義域在R上的函數(shù)是奇函數(shù)且,當時,,則的值為()A. B.C D.12.設向量=(1.)與=(-1,2)垂直,則等于A. B.C.0 D.-1二、填空題(本大題共4小題,共20分)13.若,則的最小值為__________.14.梅州城區(qū)某公園有一座摩天輪,其旋轉半徑30米,最高點距離地面70米,勻速運行一周大約18分鐘.某人在最低點的位置坐上摩天輪,則第12分鐘時,他距地面大約為___________米.15.函數(shù)的值域是__________16.設、、為的三個內(nèi)角,則下列關系式中恒成立的是__________(填寫序號)①;②;③三、解答題(本大題共6小題,共70分)17.已知函數(shù),.(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)用括號中的正確條件填空.函數(shù)的圖象可以用下面的方法得到:先將正弦曲線,向___________(左,右)平移___________(,)個單位長度;在縱坐標不變的條件下再把所得曲線上各點的橫坐標變?yōu)樵瓉淼腳__________(,2)倍,再在橫坐標不變的條件下把所得曲線上各點的縱坐標變?yōu)樵瓉淼腳__________(,2)倍,最后再把所得曲線向___________(上,下)平移___________(1,2)個單位長度.18.在①函數(shù)的圖象向右平移個單位長度得到的圖象,圖象關于原點對稱;②向量,;③函數(shù).這三個條件中任選一個,補充在下面問題中,并解答.已知_________,函數(shù)的圖象相鄰兩條對稱軸之間的距離為.(1)求;(2)求函數(shù)在上的單調(diào)遞減區(qū)間.19.已知圓,直線,點在直線上,過點作圓的切線,切點分別為.(Ⅰ)若,求點的坐標;(Ⅱ)求證:經(jīng)過三點圓必過定點,并求出所有定點的坐標.20.已知函數(shù)的定義域為,不等式的解集為設集合,且,求實數(shù)的取值范圍;定義且,求21.某藥物研究所開發(fā)了一種新藥,根據(jù)大數(shù)據(jù)監(jiān)測顯示,病人按規(guī)定的劑量服藥后,每毫升血液中含藥量y(微克)與時間x(小時)之間的關系滿足:前1小時內(nèi)成正比例遞增,1小時后按指數(shù)型函數(shù)y=max?1(m,a為常數(shù),且0<a<1)圖象衰減.如圖是病人按規(guī)定的劑量服用該藥物后,每毫升血液中藥物含量隨時間變化的曲線.(1)當a=時,求函數(shù)y=f(x)的解析式,并求使得y≥1的x的取值范圍;(2)研究人員按照M=的值來評估該藥的療效,并測得M≥時此藥有療效.若病人某次服藥后測得x=3時每毫升血液中的含藥量為y=8,求此次服藥有療效的時長.22.已知函數(shù).(1)求函數(shù)的最小正周期及函數(shù)的對稱軸方程;(2)若,求函數(shù)的單調(diào)區(qū)間和值域.
參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】先利用三角恒等變化公式將函數(shù)化成形式,然后直接得出最值.【詳解】整理得,利用輔助角公式得,所以函數(shù)的最大值為,故選A.【點睛】三角函數(shù)求最值或者求值域一定要先將函數(shù)化成的形函數(shù).2、B【解析】利用一元二次方程的解法化簡集合化簡集合,利用并集的定義求解即可.【詳解】由一元二次方程的解法化簡集合,或,,或,故選B.【點睛】研究集合問題,一定要抓住元素,看元素應滿足的屬性.研究兩集合的關系時,關鍵是將兩集合的關系轉化為元素間的關系,本題實質(zhì)求滿足屬于集合或?qū)儆诩系脑氐募?3、B【解析】解不等式求得集合、,由此求得.【詳解】,,所以.故選:B4、C【解析】由已知可得PA⊥平面ABCD,底面ABCD為正方形,分別過P,D點作AD,AP的平行線交于M,連接CM,AM,因為PB∥CM,所以ACM就是異面直線PB與AC所成的角,再求解即可.【詳解】由題意:底面ABCD為正方形,側面底面,,面面,PA⊥平面ABCD,分別過P,D點作AD,AP的平行線交于M,連接CM,AM,∵PM∥AD,AD∥BC,PM=AD,AD=BC∴PBCM是平行四邊形,∴PB∥CM,所以∠ACM就是異面直線PB與AC所成的角設PA=AB=a,在三角形ACM中,,∴三角形ACM是等邊三角形所以∠ACM等于60°,即異面直線PB與AC所成的角為60°故選:C.【點睛】思路點睛:先利用面面垂直得到PA⊥平面ABCD,分別過P,D點作AD,AP的平行線交于M,連接CM,AM,得到∠ACM就是異面直線PB與AC所成的角5、D【解析】根據(jù)函數(shù)的奇偶性可排除選項A,B;根據(jù)函數(shù)在上的單調(diào)性可排除選項C,進而可得正確選項.【詳解】函數(shù)的定義域為且,關于原點對稱,因為,所以是偶函數(shù),圖象關于軸對稱,故排除選項A,B,當時,,由在上單調(diào)遞增,在上單調(diào)遞減,可得在上單調(diào)遞增,排除選項C,故選:D.6、A【解析】根據(jù)角的旋轉與三角函數(shù)定義得,利用兩角和的正切公式求得,然后待求式由二倍公式,“1”的代換,變成二次齊次式,轉化為的式子,再計算可得【詳解】解:將角的終邊按順時針方向旋轉后所得的角為,因為旋轉后的終邊過點,所以,所以.所以.故選:A7、A【解析】利用函數(shù),,單調(diào)性,借助于0和1,即可對a、b、c比較大小,得到答案【詳解】由題意,可知函數(shù)是定義域上的增函數(shù),,又是定義域上的增函數(shù),,又是定義域上的減函數(shù),,所以,故選A【點睛】本題主要考查了函數(shù)值的比較大小問題,其中解答中熟記指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,借助指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性進行判定是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.8、C【解析】因為,故,所以,故選C.9、B【解析】根據(jù)給定條件,探討函數(shù)的性質(zhì),再把不等式等價轉化,利用的性質(zhì)求解作答.【詳解】因為定義在上的偶函數(shù),則,即是R上的偶函數(shù),又在上單調(diào)遞增,則在上單調(diào)遞減,,即,因此,,平方整理得:,解得,所以原不等式的解集是.故選:B10、D【解析】由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不為0兩類不等式組求解【詳解】要使原函數(shù)有意義,需滿足,解得x≥1.∴函數(shù)f(x)=的定義域為[1,+∞)故選D.【點睛】本題考查函數(shù)的定義域及其求法,解題的關鍵是是根式內(nèi)部的代數(shù)式大于等于0,分式的分母不為011、A【解析】根據(jù)函數(shù)的奇偶性和周期性進行求解即可.【詳解】因為,所以函數(shù)的周期為,因為函數(shù)是奇函數(shù),當時,,所以,故選:A12、C【解析】:正確的是C.點評:此題主要考察平面向量的數(shù)量積的概念、運算和性質(zhì),同時考察三角函數(shù)的求值運算.二、填空題(本大題共4小題,共20分)13、【解析】整理代數(shù)式滿足運用基本不等式結構后,用基本不等式求最小值.【詳解】∵∴當且僅當,時,取最小值.故答案為:【點睛】用基本不等式求最值要注意“一正、二定、三相等”,若不能取等,則要改變求最值的方法.14、55【解析】建立平面直角坐標系,第分鐘時所在位置的高度為,設出其三角函數(shù)的表達式,由題意,得出其周期,求出解析式,然后將代入,可得答案.【詳解】如圖設為地面,圓為摩天輪,其旋轉半徑30米,最高點距離地面70米.則摩天輪的最低點離地面10米,即以所在直線為軸,所在直線為軸,建立平面直角坐標系.某人在最低點的位置坐上摩天輪,則第分鐘時所在位置的高度為則由題意,,則,所以當時,故答案為:5515、【解析】利用換元法,將變?yōu)椋缓罄萌呛愕茸儞Q,求三角函數(shù)的值域,可得答案.【詳解】由,得,可設,故,不妨取為銳角,而,時取最大值),,故函數(shù)的值域為,故答案為:.16、②、③【解析】因為是的內(nèi)角,故,,從而,,,故選②、③.點睛:三角形中各角的三角函數(shù)關系,應注意利用這個結論.三、解答題(本大題共6小題,共70分)17、(1),(2)左,,,2,上,1【解析】(1)根據(jù)降冪公式、二倍角的正弦公式及兩角和的正弦公式化簡,由正弦型三角函數(shù)的周期公式求周期,由正弦型函數(shù)的單調(diào)性求單調(diào)區(qū)間;(2)根據(jù)三角函數(shù)的圖象變換過程求解即可.【小問1詳解】,∴函數(shù)的最小正周期.由,得:,,∴的單調(diào)遞減區(qū)間為,.【小問2詳解】將的圖象向左平移個單位,得到的圖象,在縱坐標不變的條件下再把所得曲線上各點的橫坐標變?yōu)樵瓉淼谋?,得到的圖象,再在橫坐標不變的條件下把所得曲線上各點的縱坐標變?yōu)樵瓉淼?倍,得到的圖象,最后再把所得曲線向上平移1個單位長度,即可得到函數(shù)的圖象.18、選擇見解析;(1);(2)單調(diào)遞減區(qū)間為.【解析】選條件①:由函數(shù)的圖象相鄰兩條對稱軸之間的距離為,得到,解得,再由平移變換和圖象關于原點對稱,解得,得到,(1)將代入求解;(2)令,結合求解.選條件②:利用平面向量的數(shù)量積運算得到,再由,求得得到.(1)將代入求解;(2)令,結合求解.選條件③:利用兩角和的正弦公式,二倍角公式和輔助角法化簡得到,再由,求得得到.(1)將代入求解;(2)令,結合求解.【詳解】選條件①:由題意可知,最小正周期,∴,∴,∴,又函數(shù)圖象關于原點對稱,∴,∵,∴,∴,(1);(2)由,得,令,得,令,得,∴函數(shù)在上的單調(diào)遞減區(qū)間為.選條件②:∵,∴,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得,∴函數(shù)在上的單調(diào)遞減區(qū)間為.選條件③:,,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得.∴函數(shù)在上的單調(diào)遞減區(qū)間為.【點睛】方法點睛:1.討論三角函數(shù)性質(zhì),應先把函數(shù)式化成y=Asin(ωx+φ)(ω>0)的形式
函數(shù)y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期為,y=tan(ωx+φ)的最小正周期為.
對于函數(shù)的性質(zhì)(定義域、值域、單調(diào)性、對稱性、最值等)可以通過換元的方法令t=ωx+φ,將其轉化為研究y=sint的性質(zhì)19、(1)點的坐標為或(2)見解析,過的圓必過定點和【解析】(1)設,由題可知,由點點距得到,解得參數(shù)值;(2)設的中點為,過三點的圓是以為直徑的圓,根據(jù)圓的標準方程得到圓,根據(jù)點P在直線上得到,代入上式可求出,進而得到定點解析:(Ⅰ)設,由題可知,即,解得:,故所求點的坐標為或.(2)設的中點為,過三點的圓是以為直徑的圓,設,則又∵圓又∵代入(1)式,得:整理得:無論取何值時,該圓都經(jīng)過的交點或綜上所述,過的圓必過定點和點睛:這個題目考查的是直線和圓的位置關系;一般直線和圓的題很多情況下是利用數(shù)形結合來解決的,聯(lián)立的時候較少;還有就是在求圓上的點到直線或者定點的距離時,一般是轉化為圓心到直線或者圓心到定點的距離,再加減半徑,分別得到最大值和最小值20、(1);(2)【解析】由二次不等式的解法得,由集合間的包含關系列不等式組求解即可;由對數(shù)函數(shù)的定義域可得,利用指數(shù)函數(shù)的單調(diào)性解不等式可得,由定義且,先求出,再求出即可【詳解】解不等式,得:,即,又集合,且,則有,解得:,故答案為.令,解得:,即,由定義且可知:即,即,故答案為.【點睛】本題考查了二次不等式的解法、對數(shù)函數(shù)的定義域、指數(shù)函數(shù)的單調(diào)性以及新定義問題,屬中檔題.新定義題型的特點是:通過給出一個新概念,或約定一種新運算,或給出幾個新模型來創(chuàng)設全新的問題情景,要求考生在閱讀理解的基礎上,依據(jù)題目提供的信息,聯(lián)系所學的知識和方法,實現(xiàn)信息的遷移,達到靈活解題的目的.遇到新定義問題,應耐心讀題,分析新定義的特點,弄清新定義的性質(zhì),按新定義的要求,“照章辦事”,逐條分析、驗證、運算,使問題得以解決.21、(1),(2)小時【解析】(1)根據(jù)圖像求出解析式;令直接解出的取值范圍;(2)先求出,得到,根據(jù)單調(diào)性計算出解集即可.【小問1詳解】當時,與成正比例,設為,則;所以,當時,故
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 玉溪師范學院《數(shù)據(jù)結構與算法》2021-2022學年期末試卷
- 玉溪師范學院《模擬電子技術實驗》2021-2022學年期末試卷
- 道路運輸企業(yè)主要負責人理論考試題及答案-知識題庫
- 國際金融實務教案
- 第一新聲-2024年中國CRM市場研究報告
- 2024年玻璃石材家具項目成效分析報告
- 2024屆河北省石家莊市晉州一中第一次高中畢業(yè)生復習統(tǒng)一檢測試題數(shù)學試題
- 2024屆廣西壯族自治區(qū)桂林市人教A版高中數(shù)學試題高三二輪函數(shù)的圖象與性質(zhì)測試
- 2024屆廣西欽州市第三中學高三數(shù)學試題3月25日第4周測試題
- 采購合同履約檢查方案
- 660MW機組空預器聲波吹灰器可行性研究報告最新(精華版)
- 控制柜安裝施工方案
- 七年級歷史教案:林則徐的教學設計
- 動車組火災檢測(報警)系統(tǒng)
- 水面垃圾自動打撈船的設計 (全套圖紙)
- 煙草企業(yè)安全生產(chǎn)標準化 規(guī)范
- 裝飾施工技術標準及要求
- 2018秋七年級虎外考試卷英語試卷
- 河洛擇日法[技巧]
- P91材質(zhì)焊接及熱處理工程作業(yè)指導書(完整版)
- 醫(yī)療器械質(zhì)量保證及售后服務承諾書模板
評論
0/150
提交評論