版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年四川省廣元市四川師范大學(xué)附屬萬達(dá)中學(xué)數(shù)學(xué)高一上期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.A B.C.1 D.2.已知角α的終邊過點,則的值是()A. B.C.0 D.或3.要得到函數(shù)的圖象,只需將函數(shù)的圖象向()平移()個單位長度A.左 B.右C.左 D.右4.已知函數(shù),若,且當(dāng)時,則的取值范圍是A. B.C. D.5.若直線過點,,則此直線的傾斜角是()A.30° B.45°C.60° D.90°6.下列函數(shù)在定義域內(nèi)為奇函數(shù),且有最小值的是A. B.C. D.7.已知集合A=,B=,則A.AB= B.ABC.AB D.AB=R8.已知與分別是函數(shù)與的零點,則的值為A. B.C.4 D.59.如果,那么A. B.C. D.10.盡管目前人類還無法準(zhǔn)確預(yù)報地震,但科學(xué)研究表明,地震時釋放出的能量E(單位:焦耳)與地震里氏M震級之間的關(guān)系為lgE=4.8+1.5M.已知兩次地震的能量與里氏震級分別為Ei與Mii=1,2,若A.103C.lg3 D.二、填空題:本大題共6小題,每小題5分,共30分。11.在用二分法求方程的一個近似解時,現(xiàn)在已經(jīng)將根鎖定在區(qū)間(1,2)內(nèi),則下一步可以斷定該根所在區(qū)間為___________.12.關(guān)于x的不等式在上恒成立,則實數(shù)m的取值范圍是______13.______.14.若、是關(guān)于x的方程的兩個根,則__________.15.如圖,矩形的三個頂點分別在函數(shù),,的圖像上,且矩形的邊分別平行于兩坐標(biāo)軸.若點的縱坐標(biāo)為2,則點的坐標(biāo)為______.16.已知直線,則與間的距離為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的點,且BF⊥平面ACE.(1)求證:AE⊥平面BCE;(2)求證:AE∥平面BFD;(3)求三棱錐C-BGF的體積18.已知平面向量,,,且,.(1)求和:(2)若,,求向量與向量的夾角的大小.19.已知函數(shù),(其中,,),的相鄰兩條對稱軸間的距離為,且圖象上一個最高點的坐標(biāo)為.(Ⅰ)求的解析式;(Ⅱ)求的單調(diào)遞減區(qū)間;(Ⅲ)當(dāng)時,求的值域.20.已知函數(shù)的圖象過點(1)求的值并求函數(shù)的值域;(2)若關(guān)于的方程有實根,求實數(shù)的取值范圍;(3)若為偶函數(shù),求實數(shù)的值21.已知函數(shù)的部分圖象如圖所示(1)求函數(shù)的解析式:(2)將函數(shù)的圖象上所有的點向右平移個單位,再將所得圖象上每一個點的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變),得到函數(shù)的圖象①當(dāng)時,求函數(shù)的值域;②若方程在上有三個不相等的實數(shù)根,求的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由題意可得:本題選擇A選項.2、B【解析】根據(jù)三角函數(shù)的定義進行求解即可.【詳解】因為角α的終邊過點,所以,,,故選:B3、C【解析】因為,由此可得結(jié)果.【詳解】因為,所以其圖象可由向左平移個單位長度得到.故選:C.4、B【解析】首先確定函數(shù)的解析式,然后確定的取值范圍即可.【詳解】由題意可知函數(shù)關(guān)于直線對稱,則,據(jù)此可得,由于,故令可得,函數(shù)的解析式為,則,結(jié)合三角函數(shù)的性質(zhì),考查臨界情況:當(dāng)時,;當(dāng)時,;則的取值范圍是.本題選擇B選項.【點睛】本題主要考查三角函數(shù)的性質(zhì)及其應(yīng)用等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.5、A【解析】根據(jù)兩點求解直線的斜率,然后利用斜率求解傾斜角.【詳解】因為直線過點,,所以直線的斜率為;所以直線的傾斜角是30°,故選:A.6、D【解析】選項A中,函數(shù)為奇函數(shù),但無最小值,故滿足題意選項B中,函數(shù)為偶函數(shù),不合題意選項C中,函數(shù)為奇函數(shù),但無最小值,故不合題意選項D中,函數(shù),為奇函數(shù),且有最小值,符合題意選D7、A【解析】由得,所以,選A點睛:對于集合的交、并、補運算問題,應(yīng)先把集合化簡再計算,常常借助數(shù)軸或韋恩圖處理8、D【解析】設(shè),,由,互為反函數(shù),其圖象關(guān)于直線對稱,作直線,分別交,的圖象為A,B兩點,點為A,B的中點,聯(lián)立方程得,由中點坐標(biāo)公式得:,又,故得解【詳解】解:由,化簡得,設(shè),,由,互為反函數(shù),其圖象關(guān)于直線對稱,作直線,分別交,的圖象為A,B兩點,點為A,B的中點,聯(lián)立得;,由中點坐標(biāo)公式得:,所以,故選D【點睛】本題考查了反函數(shù)、中點坐標(biāo)公式及函數(shù)的零點等知識,屬于難題.9、D【解析】:,,即故選D10、A【解析】利用對數(shù)運算和指數(shù)與對數(shù)互化求解.【詳解】由題意得:lgE1=4.8+1.5兩式相減得:lgE又因為M2所以E2故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)二分法,取區(qū)間中點值,而,,所以,故判定根區(qū)間考點:二分法【方法點睛】本題主要考察了二分法,屬于基礎(chǔ)題型,對于零點所在區(qū)間的問題,不管怎么考察,基本都要判斷端點函數(shù)值的正負(fù),如果異號,那零點必在此區(qū)間,如果是幾個零點,還要判定此區(qū)間的單調(diào)性,這個題考查的是二分法,所以要算區(qū)間的中點值,和兩個端點值的符號,看是否異號.零點肯定在異號的區(qū)間12、【解析】對m進行討論,變形,構(gòu)造新函數(shù)求導(dǎo),利用單調(diào)性求解最值可得實數(shù)m的取值范圍;【詳解】解:由上,;當(dāng)時,顯然也不成立;;可得設(shè),其定義域為R;則,令,可得;當(dāng)上時,;當(dāng)上時,;當(dāng)時;取得最大值為可得,;解得:;故答案為.【點睛】本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性和最值中的應(yīng)用,屬于難題.13、【解析】首先利用乘法將五進制化為十進制,再利用“倒序取余法”將十進制化為二進制即可.【詳解】,根據(jù)十進制化為二進制“倒序取余法”如下:可得.故答案為:【點睛】本題考查了進位制的轉(zhuǎn)化,在求解過程中,一般都是先把其它進制轉(zhuǎn)化為十進制,再用倒序取余法轉(zhuǎn)化為其它進制,屬于基礎(chǔ)題.14、【解析】先通過根與系數(shù)的關(guān)系得到的關(guān)系,再通過同角三角函數(shù)的基本關(guān)系即可解得.【詳解】由題意:,所以或,且,所以,即,因為或,所以.故答案為:.15、【解析】先利用已知求出的值,再求點D的坐標(biāo).【詳解】由圖像可知,點在函數(shù)的圖像上,所以,即.因為點在函數(shù)的圖像上,所以,.因為點在函數(shù)的圖像上,所以.又因為,,所以點的坐標(biāo)為.故答案為【點睛】本題主要考查指數(shù)、對數(shù)和冪函數(shù)的圖像和性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.16、【解析】根據(jù)平行線間距離直接計算.【詳解】由已知可得兩直線互相平行,故,故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見詳解;(2)見詳解;(3)【解析】(1)證明∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,則AE⊥BC.又∵BF⊥平面ACE,則AE⊥BF,又BC∩BF=B,∴AE⊥平面BCE.(2)證明由題意可得G是AC的中點,連結(jié)FG,∵BF⊥平面ACE,∴CE⊥BF.而BC=BE,∴F是EC的中點,在△AEC中,F(xiàn)G∥AE,∴AE∥平面BFD.(3)∵AE∥FG.而AE⊥平面BCE,∴FG⊥平面BCF.∵G是AC中點,F(xiàn)是CE中點,∴FG∥AE且FG=AE=1.∴Rt△BCE中,BF=CE=CF=,∴S△CFB=××=1.∴VC-BGF=VG-BCF=·S△CFB·FG=.18、(1),;(2).【解析】(1)本題首先可根據(jù)、得出,然后通過計算即可得出結(jié)果;(2)本題首先可根據(jù)題意得出以及,然后求出、以及的值,最后根據(jù)向量的數(shù)量積公式即可得出結(jié)果.【詳解】(1)因為,,,且,,所以,解得,故,.(2)因為,,所以,因為,,所以,,,,設(shè)與的夾角為,則,因為,所以,向量與向量的夾角為.【點睛】本題考查向量平行、向量垂直以及向量的數(shù)量積的相關(guān)性質(zhì),若、且,則,考查通過向量的數(shù)量積公式求向量的夾角,考查計算能力,是中檔題.19、(1)(2)(3)【解析】(Ⅰ)由相鄰兩對稱軸間距離是半個周期可求得,再由最高點為可得A,;(Ⅱ)利用正弦函數(shù)的單調(diào)性,解不等式可得減區(qū)間;(Ⅲ)由已知求得,由正弦函數(shù)的性質(zhì)可得值域試題解析:(Ⅰ)相鄰兩條對稱軸間距離為,,即,而由得,圖象上一個最高點坐標(biāo)為,,,,,,.(Ⅱ)由,得,單調(diào)減區(qū)間為.(Ⅲ),,,的值域為.20、(1)(2)(3)【解析】(1)函數(shù)圖象過,代入計算可求出的值,結(jié)合對數(shù)函數(shù)的性質(zhì)可求出函數(shù)的值域;(2)構(gòu)造函數(shù),求出它在上的值域,即可求出的取值范圍;(3)利用偶函數(shù)的性質(zhì),即可求出【詳解】(1)因為函數(shù)圖象過點,所以,解得.則,因為,所以,所以函數(shù)的值域為.(2)方程有實根,即,有實根,構(gòu)造函數(shù),則,因為函數(shù)在R上單調(diào)遞減,而在(0,)上單調(diào)遞增,所以復(fù)合函數(shù)是R上單調(diào)遞減函數(shù)所以在上,最小值,最大值為,即,所以當(dāng)時,方程有實根(3),是R上的偶函數(shù),則滿足,即恒成立,則恒成立,則恒成立,即恒成立,故,則恒成立,所以.【點睛】本題考查了函數(shù)的奇偶性的應(yīng)用,及對數(shù)函數(shù)的性質(zhì),屬于中檔題21、(1);(2)①;②.【解析】(1)由圖象得A、B、,再代入點,求解可得函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 背簍投球教案及反思
- 氧化碳的性質(zhì)說課稿
- 化學(xué)的說課稿
- 木工包工協(xié)議范本
- 工程監(jiān)理資料管理
- 辦公用品展銷會管理辦法
- 情侶旅行民宿管理細(xì)則
- 森林資源開發(fā)護林員合同
- 外交用章制度管理辦法
- 倉儲物流資產(chǎn)處置操作手冊
- 2024年度陜西省安全員之A證(企業(yè)負(fù)責(zé)人)提升訓(xùn)練試卷B卷附答案
- 2025屆廣東省珠海市紫荊中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析
- 期中測試卷(1-3單元)(試題)2024-2025學(xué)年六年級上冊數(shù)學(xué)蘇教版
- 現(xiàn)代農(nóng)業(yè)課件教學(xué)課件
- 2024年專業(yè)技術(shù)人員繼續(xù)教育公需科目-職業(yè)幸福感的提升考試近5年真題集錦(頻考類試題)帶答案
- DB34∕T 4317-2022 商業(yè)秘密保護規(guī)范
- 農(nóng)業(yè)無人機物流行業(yè)發(fā)展方向及匹配能力建設(shè)研究報告
- 《自制信封》教學(xué)設(shè)計-小學(xué)勞動蘇教版《勞動與技術(shù)》三年級上冊
- 信息化系統(tǒng)安全運維服務(wù)方案三篇
- 通信工程專業(yè)導(dǎo)論(第6-10章)
- Unit 1 (Section A 1a-2) 教學(xué)設(shè)計 2024-2025學(xué)年人教版(2024)七年級英語上冊
評論
0/150
提交評論