![生成式人工智能教育與研究應(yīng)用指南(英)_第1頁](http://file4.renrendoc.com/view10/M02/3B/2C/wKhkGWVlZ1aAZQ9jAACjQBZ_ukg292.jpg)
![生成式人工智能教育與研究應(yīng)用指南(英)_第2頁](http://file4.renrendoc.com/view10/M02/3B/2C/wKhkGWVlZ1aAZQ9jAACjQBZ_ukg2922.jpg)
![生成式人工智能教育與研究應(yīng)用指南(英)_第3頁](http://file4.renrendoc.com/view10/M02/3B/2C/wKhkGWVlZ1aAZQ9jAACjQBZ_ukg2923.jpg)
![生成式人工智能教育與研究應(yīng)用指南(英)_第4頁](http://file4.renrendoc.com/view10/M02/3B/2C/wKhkGWVlZ1aAZQ9jAACjQBZ_ukg2924.jpg)
![生成式人工智能教育與研究應(yīng)用指南(英)_第5頁](http://file4.renrendoc.com/view10/M02/3B/2C/wKhkGWVlZ1aAZQ9jAACjQBZ_ukg2925.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
GuidanceforgenerativeAIGuidanceforgenerativeAIineducationandresearch20302030UNESCO–agloballeaderineducationEducationisUNESCO’stopprioritybecauseitisabasichumanrightandthefoundationforpeaceandsustainabledevelopment.UNESCOistheUnitedNations’specializedagencyforeducation,providingglobalandregionalleadershiptodriveprogress,strengtheningtheresilienceandcapacityofnationalsystemstoservealllearners.UNESCOalsoleadseortstorespondtocontemporaryglobalchallengesthroughtransformativelearning,withspecialfocusongenderequalityandAfricaacrossallactions.TheGlobalEducation2030AgendaUNESCO,astheUnitedNations’specializedagencyforeducation,isentrustedtoleadandcoordinatetheEducation2030Agenda,whichispartofaglobalmovementtoeradicatepovertythrough17SustainableDevelopmentGoalsby2030.Education,essentialtoachieveallofthesegoals,hasitsowndedicatedGoal4,whichaimsto“ensureinclusiveandequitablequalityeducationandpromotelifelonglearningopportunitiesforall.”TheEducation2030FrameworkforActionprovidesguidancefortheimplementationofthisambitiousgoalandcommitments.20302030PubliclyavailablegenerativeAI(GenAI)toolsarerapidlyemerging,andthereleaseofiterativeversionsisoutpacingtheadaptationofnationalregulatoryframeworks.TheabsenceofnationalregulationsonGenAIinmostcountriesleavesthedataprivacyofusersunprotectedandeducationalinstitutionslargelyunpreparedtovalidatethetools.UNESCO’sfirstglobalguidanceonGenAIineducationaimstosupportcountriestoimplementimmediateactions,planlong-termpoliciesanddevelophumancapacitytoensureahuman-centredvisionofthesenewtechnologies.TheGuidancepresentsanassessmentofpotentialrisksGenAIcouldposetocorehumanisticvaluesthatpromotehumanagency,inclusion,equity,genderequality,andlinguisticandculturaldiversities,aswellaspluralopinionsandexpressions.ItproposeskeystepsforgovernmentalagenciestoregulatetheuseofGenAItoolsincludingmandatingtheWhileChatGPTWhileChatGPTagelimitfortheiruse.ItoutlinesreforGenAIproviderstoenabletheirethicalandeffectiveuseineducation.onecountryhadreleasedonecountryhadreleasedongenerativeAIinstitutionstovalidateGenAIsystemsontheirethicalandpedagogicalappropriatenessforeducation.Itcallsontheinternationalcommunitytoreflectontheirlong-termimplicationsforknowledge,teaching,learningandassessment.Thepublicationoffersconcreterecommendationsforpolicy-makersandeducationalinstitutionsonhowtheusesofGenAItoolscanbedesignedtoprotecthumanagencyandgenuinelybenefitlearners,teachersandresearchers.Generativeartificialintelligence(GenAI)burstintothepublicawarenessinlate2022withthelaunchofChatGPT,whichbecamethefastestgrowingappinhistory.Withthepowertoimitatehumancapabilitiestoproduceoutputssuchastext,images,videos,musicandsoftwarecodes,theseGenAIapplicationshavecausedastir.MillionsofpeoplearenowusingGenAIintheirdailylivesandthepotentialofadaptingthemodelstodomain-specificAIapplicationsseemsunlimited.Suchwide-rangingcapacitiesforinformationprocessingandknowledgeproductionhavepotentiallyhugeimplicationsforeducation,astheyreplicatethehigher-orderthinkingthatconstitutesthefoundationofhumanlearning.AsGenAItoolsareincreasinglyabletoautomatesomebasiclevelsofwritingandartworkcreation,theyareforcingeducationpolicy-makersandinstitutionstorevisitwhy,whatandhowwelearn.Thesearenowcriticalconsiderationsforeducationinthisnewphaseofthedigitalera.Thispublicationaimstosupporttheplanningofappropriateregulations,policiesandhumancapacitydevelopment,toensurethatGenAIbecomesatoolthatgenuinelybenefitsandempowersteachers,learnersandresearchers.ItproposeskeystepsforgovernmentalagenciestoregulatetheuseofgenerativeAI.Italsopresentsframeworksandconcreteexamplesforpolicyformulationandinstructionaldesignthatenableethicalandeffectiveusesofthistechnologyineducation.Finally,itcallsontheinternationalcommunitytoconsidertheprofoundlonger-termimplicationsofgenerativeAIforhowweunderstandknowledgeanddefinelearningcontent,methodsandoutcomes,aswellasthewayinwhichweassessandvalidatelearning.BuildingonUNESCO’s2021RecommendationontheEthicsofArtificialIntelligence,theguidanceisanchoredinahumanisticapproachtoeducationthatpromoteshumanagency,inclusion,equity,genderequality,andculturalandlinguisticdiversity,aswellaspluralopinionsandexpressions.Furthermore,itrespondstothecallofthe2021reportoftheInternationalCommissionontheFuturesofEducation,Reimaginingourfuturestogether:contractforeducationtoredefineourrelationshipwithtechnology,asanintegralpartofoureffortstorenewthesocialcontractforeducation.AImustnotusurphumanintelligence.Rather,itinvitesustoreconsiderourestablishedunderstandingsofknowledgeandhumanlearning.Itismyhopethatthisguidancewillhelpusredefinenewhorizonsforeducationandinformourcollectivethinkingandcollaborativeactionsthatcanleadtohuman-centreddigitallearningfuturesAcknowledgementsAcknowledgementsUndertheleadershipofStefaniaGiannini,Assistant-DirectorforEducation,andtheguidanceofSobhiTawil,DirectoroftheFutureofLearningandInnovationDivisionatUNESCO,thedraftingofthepublicationwasledbyFengchunMiao,ChiefofUnitforTechnologyandAIinEducation.ParticularthanksgotoWayneHolmes,AssociateProfessoratUniversityCollegeLondon,whoco-draftedthepublication.ThispublicationisthefruitofacollectiveeffortofeducationleadersandexpertsinthefieldofAIandeducation.Itbenefitedfromtheinsightsandinputsofmanyexpertsincluding:MutluCukurova,ProfessoratUniversityCollegeLondon;ColindelaHiguera,UNESCOChairinTechnologiesfortheTrainingofTeacherswithOpenEducationalResourcesatNantesUniversity;ShafikaIsaacs,ResearchAssociateattheUniversityofJohannesburg;NatalieLao,ExecutiveDirectoroftheAppInventorFoundation;QinNi,AssociateProfessoratShanghaiNormalUniversity;CatalinaNicolin,ICTinEducationExpertattheEuropeanDigitalEducationHubinRomania;JohnShaw-Taylor,UNESCOChairinAIandProfessorofComputationalStatisticsandMachineLearningatUniversityCollegeLondon;KellyShirohira,ExecutiveManageratJetEducationServices;Ki-SangSong,ProfessoratKoreaNationalUniversityofEducation;andIlkkaTuomi,ChiefScientistatMeaningProcessingLtdinFinland.ManycolleaguesacrossUNESCOalsocontributedinvariouswaysincluding:DafnaFeinholz,ChiefofSectionforBioethicsandtheEthicsofScienceandTechnology;FrancescPedró,DirectoroftheInternationalInstituteforHigherEducationinLatinAmericaandtheCaribbean;PrateekSibal,ProgrammeSpecialist,SectionforDigitalPoliciesandDigitalTransformation;SaurabhRoy,SeniorProjectOfficerattheSectionforTeacherDevelopment,DivisionforPoliciesandLifelongLearningSystems;BenjaminVergelDeDios,ProgrammeSpecialistinICTinEducation,SectionforEducationalInnovationandSkillsDevelopmentintheBangkokOffice;thecolleaguesintheDiversityofCulturalExpressionsEntityintheCultureSector;andMarkWest,ProgrammeSpecialist,FutureofLearningandInnovationDivision.AppreciationisalsoduetoGlenHertelendy,LuisaFerraraandXiangleiZheng,UnitforTechnologyandAIinEducation,FutureofLearningandInnovation,forcoordinatingtheproductionofthepublication.GratitudeisalsoextendedtoJennyWebsterforcopy-editingandproofreadingthetext,andtoNgoc-ThuyTranfordesigningthelayout.4TableTableofcontentsForeword 2Acknowledgements 3Listofacronymsandabbreviations 6Introduction 71.WhatisgenerativeAIandhowdoesitwork? 8 81.2HowdoesgenerativeA 81.2.1HowtextGenAImodelswork 91.2.2HowimageGenAImodelswork 1.3Prompt-engineeringtogeneratedesiredoutputs 111.4EmergingEdGPTanditsimplications 132.ControversiesaroundgenerativeAIandtheirimplicationsforeducation 142.1Worseningdigitalpoverty 142.2Outpacingnationalregulatoryadaptation 142.3Useofcontentwithoutconsent 152.4Unexplainablemodelsusedtogenerateoutputs 152.5AI-generatedcontentpollutingtheinternet 162.6Lackofunderstandingoftherealworld 16 172.8Generatingdeeperdeepfakes 173.RegulatingtheuseofgenerativeAIineducation 183.1Ahuman-centredapproachtoAI 183.2StepstoregulateGenAIineducation 183.3RegulationsonGenAI:Keyelements 203.3.1Governmentalregulatoryagencies 203.3.2ProvidersofGenAI 21 23 234.TowardsapolicyframeworkfortheuseofgenerativeAIineducationandresearch 244.1Promoteinclusion,equity,andlinguisticandculturaldiversity 244.2Protecthumanagency 2454.3MonitorandvalidateGenAIsystemsforeducation 254.4DevelopAIcompetenciesincluding 254.5BuildcapacityforteachersandresearcherstomakeproperuseofGenAI 264.6Promotepluralopinionsandpluralexpressionsofideas 264.7Testlocallyrelevantapplicationmodelsandbuildacumulativeevidencebase 274.8Reviewlong-termimplicationsinanintersectoralandinterdisciplinarymanner 275.FacilitatingcreativeuseofGenAIineducationandresearch 285.1InstitutionalstrategiestofacilitateresponsibleandcreativeuseofGenAI 285.2A‘human-centredandpedagogicallyappropriateinteraction’approach 295.3Co-designingtheuseofGenAIineducationandresearch 29 295.3.2GenerativeAItofacilitateteaching 305.3.3GenerativeAIasa1:1coachfortheself-pacedacquisitionoffoundationalskills 315.3.4GenerativeAItofacilitateinquiryorproject-basedlearning 335.3.5GenerativeAItosupportlearnerswithspecialneeds 346.GenAIandthefutureofeducationandresearch 366.1Unchartedethicalissues 366.2Copyrightandintellectualproperty 366.3Sourcesofcontentandlearning 366.4Homogenizedresponsesversusdiverseandcreativeoutputs 376.5Rethinkingassessmentandlearningoutcomes 376.6Thinkingprocesses 37Concludingremarks 38References 39ListoftablesTable1.TechniquesusedingenerativeAI 8Table2.OpenAIGPTs 9Table3.Co-designingusesofGenAIforresearch 30Table4.Co-designingusesofGenAItosupportteachersandteaching 31Table5.Co-designingusesofGenAIasa1:1coachfortheself-pacedacquisitionoffoundationalskillsinlanguagesandthearts 32Table6.Co-designingusesofGenAItofacilitateinquiryorproject-basedlearning 33Table7.Co-designingusesofGenAItosupportlearnerswithspecialneeds 346ListListofacronymsandabbreviationsAGIArtificialgeneralintelligenceAIArtificialintelligenceAPIApplicationprogramminginterfaceANNArtificialneuralnetworkDAIDistributedartificialintelligenceGANGenerativeadversarialnetworksGBGigabytesGDPRGeneralDataProtectionRegulationGenAIGenerativeartificialintelligenceGPTGenerativepre-trainedtransformerICTInformationandcommunicationtechnologyLaMDALanguagemodelfordialogueapplicationsLLMLargelanguagemodelMLMachinelearningVAEVariationalautoencodersAGCCAIGovernmentCloudCluster(Singapore)CACCyberspaceAdministrationofChinaEUEuropeanUnionOECDOrganisationforEconomicCo-operationandDevelopmentUNCTADUnitedNationsConferenceonTradeandDevelopmentUNESCOUnitedNationsEducational,ScientificandCulturalOrganizationIntroductionIntroductionThereleaseofChatGPTinlate2022,thefirsteasy-to-usegenerativeartificialintelligence(GenAI)toolmadewidelyavailabletothepublic,1followedbyiterativelymoresophisticatedversions,sentshockwavesworldwide,andisfuellingtheraceamonglargetechnologycompaniestopositionthemselvesinthefieldofGenAImodeldevelopment.2Acrosstheworld,theinitialconcernineducationwasthatChatGPTandsimilarGenAItoolswouldbeusedbystudentstocheatontheirassignments,thusunderminingthevalueoflearningassessment,certificationandqualifications(Anders,2023).WhilesomeeducationalinstitutionsbannedtheuseofChatGPT,otherscautiouslywelcomedthearrivalofGenAI(Tlili,2023).Manyschoolsanduniversities,forinstance,adoptedaprogressiveapproachbelievingthat‘ratherthanseektoprohibittheiruse,studentsandstaffneedtobesupportedinusingGenAItoolseffectively,ethicallyandtransparently’(RussellGroup,2023).ThisapproachacknowledgesthatGenAIiswidelyavailable,islikelyonlytobecomemoresophisticated,andhasbothspecificnegativeanduniquepositivepotentialforeducation.Indeed,GenAIhasamyriadofpossibleuses.Itcanautomateinformationprocessingandthepresentationofoutputsacrossallkeysymbolicrepresentationsofhumanthinking.Itenablesthedeliveryoffinaloutputsbyfurnishingsemi-finishedknowledgeproducts.Byfreeinghumansfromsomecategoriesoflower-orderthinkingskills,thisnewgenerationofAItoolsmighthaveprofoundimplicationsforhowweunderstandhumanintelligenceandlearning.ButGenAIalsoraisesmultipleimmediateconcernsrelatedtoissuessuchassafety,dataprivacy,copyright,andmanipulation.SomeofthesearebroaderrisksrelatedtoartificialintelligencethathavebeenfurtherexacerbatedbyGenAI,whileothershavenewlyemergedwiththislatestgenerationoftools.Itisnowurgentthateachoftheseissuesandconcernsbefullyunderstoodandaddressed.ThisGuidanceisdesignedtorespondtothisurgentneed.However,athematicsetofguidanceonGenAIforeducationshouldnotbeunderstoodasaclaimthatGenAIisthesolutiontoeducation’sfundamentalchallenges.Despitethemediahyperbole,itisunlikelythatGenAIalonewillsolveanyoftheproblemsfacingeducationsystemsaroundtheworld.Inrespondingtolong-standingeducationalissues,itiskeytoupholdtheideathathumancapacityandcollectiveaction,andnottechnology,isthedeterminingfactorineffectivesolutionstofundamentalchallengesfacedbysocieties.ThisGuidancethereforeaimstosupporttheplanningofappropriateregulations,policiesandhumancapacitydevelopmentprogrammes,toensurethatGenAIbecomesatoolthatgenuinelybenefitsandempowersteachers,learnersandresearchers.BuildingonUNESCO’sRecommendatiofArtificialIntelligence,theGuidanceisanchoredinahuman-centredapproachthatpromoteshumanagency,inclusion,equity,genderequality,andculturalandlinguisticdiversity,aswellaspluralopinionsandexpressions.TheGuidancefirstlooksintowhatGenAIisandhowitworks,presentingthediversetechnologiesandmodelsavailable(Section1),beforeidentifyingarangeofcontroversialethicalandpolicyissuesaroundbothAIingeneral,andGenAIspecifically(Section2).ThisisfollowedbyadiscussionofthestepsandkeyelementstobeexaminedwhenseekingtoregulateGenAIbasedonahuman-centredapproach–onethatensuresethical,safe,equitableandmeaningfuluse(Section3).Section4thenproposesmeasuresthatcanbetakentodevelopcoherent,comprehensivepolicyframeworkstoregulatetheuseofGenAIineducationandresearch,whileSection5looksintothepossibilitiesforcreativelyusingGenAIincurriculumdesign,teaching,learningandresearchactivities.Section6concludestheGuidancewithconsiderationsaroundthelong-termimplicationsofGenAIforeducationandresearch.81.WhatisgenerativeAI1.1WhatisgenerativeAI?GenerativeAI(GenAI)isanartificialintelligence(AI)technologythatautomaticallygeneratescontentinresponsetopromptswritteninnatural-languageconversationalinterfaces.Ratherthansimplycuratingexistingwebpages,bydrawingonexistingcontent,GenAIactuallyproducesnewcontent.Thecontentcanappearinformatsthatcompriseallsymbolicrepresentationsofhumanthinking:textswritteninnaturallanguage,images(includingphotographs,digitalpaintingsandcartoons),videos,musicandsoftwarecode.GenAIistrainedusingdatacollectedfromwebpages,socialmediaconversationsandotheronlinemedia.Itgeneratesitscontentbystatisticallyanalysingthedistributionsofwords,pixelsorotherelementsinthedatathatithasingestedandidentifyingandrepeatingcommonpatterns(forexample,whichwordstypicallyfollowwhichotherwords).WhileGenAIcanproducenewcontent,itcannotgeneratenewideasorsolutionstoreal-worldchallenges,asitdoesnotunderstandreal-worldobjectsorsocialrelationsthatunderpinlanguage.Moreover,despiteitsfluentandimpressiveoutput,GenAIcannotbetrustedtobeaccurate.Indeed,eventheproviderofChatGPTacknowledges,‘WhiletoolslikeChatGPTcanoftengenerateanswersthatsoundreasonable,theycannotbereliedupontobeaccurate(OpenAI,2023).Mostoften,theerrorswillgounnoticedunlesstheuserhasasolidknowledgeofthetopicinquestion.1.2HowdoesgenerativeAIworks?ThespecifictechnologiesbehindGenAIarepartofthefamilyofAItechnologiescalledmachinelearning(ML)whichusesalgorithmstoenableittocontinuouslyandautomaticallyimproveitsperformancefromdata.ThetypeofMLwhichhasledtomanyoftheadvancesinAIthatwehaveseeninrecentyears,suchastheofAIforfacialrecognition,isknownasartificialneuralnetworks(ANNs),whichareinspiredbyhowthehumanbrainworksanditssynapticconnectionsbetweenneurons.TherearemanytypesofANNs.BothtextandimagegenerativeAItechnologiesarebasedonasetofAItechnologiesthathavebeenavailabletoresearcinstance,usesagenerativepre-trainedtransformer(GPT),whileimageGenAItypicallyuseswhatareknownasgenerativeadversarialnetworks(GANs)Table1.Table1.TechniquesusedingenerativeAI491.2.1.HowtextGenAImodelsworkTextgenerativeAIusesatypeofANNknownasageneral-purposetransformer,andatypeofgeneral-purposetransformercalledalargelanguagemodel.ThisiswhyAITextGenAIsystemsareoftenreferredtoaslargelanguagemodels,orLLMs.ThetypeofLLMusedbytextGenAIisknownasagenerativepre-trainedtransformer,orGPT(hencethe‘GPT’in‘ChatGPT’).ChatGPTisbuiltonGPT-3whichwasdevelopedbyOpenAI.ThiswasthethirditerationoftheirGPT,thefirstbeinglaunchedin2018andthemostrecent,GPT-4,inMarch2023(seeTable2).EachOpenAIGPTiterativelyimproveduponthepreviousthroughadvancesinAIarchitectures,trainingmethodsandoptimizationtechniques.Onewell-knownfacetofitscontinuousprogressistheuseofgrowingamountsofdatatotrainitsexponentiallyincreasingnumberof‘parametersParametersmightbethoughtofasmetaphoricalknobsthatcanbeadjustedtofine-tunetheGPT’sperformance.Theyincludethemodel’s‘weights’,numericalparametersthatdeterminehowthemodelprocessesinputandproducesoutput.InadditiontotheadvancementsinoptimizingAIarchitecturesandtrainingmethods,thisrapiditerationhasbeenmadepossiblealsoduetothemassiveamountsofdata5andimprovementsincomputingcapabilitiesavailabletothebigcompanies.Since2012,computingcapabilitiesusedfortrainingGenAImodelshavebeendoublingevery3-4months.Bycomparison,Moore’sLawhadatwo-yeardoublingperiod(OpenAI,Table2.OpenAIGPTsTable2.OpenAIGPTs6OncetheGPThasbeentrained,generatingatextresponsetoapromptinvolvesthefollowingsteps:1.Thepromptisbrokendownintosmallerunits(calledtokens)thatareinputtedintotheGPT.2.TheGPTusesstatisticalpatternstopredictlikelywordsorphrasesthatmightformacoherentresponsetotheprompt.>TheGPTidentifiespatternsofandphrasesthatcommonlyco-occurinitsprebuiltlargedatamodel(whichcomprisestextscrapedfromtheinternetandelsewhere).>Usingthesepatterns,theGPTesttheprobabilityofspecificwordsorphrasesappearinginagivencontext.>Beginningwitharandomprediction,theGPTusestheseestimatedprobabilitiestopredictthenextlikelywordorphraseinitsresponse.3.Thepredictedwordsorphrasesareconvertedintoreadabletext.4.Thereadabletextisfilteredthroughwhatareknownas‘guardrails’toremoveanyoffensivecontent.5.Steps2to4arefinished.Theresponseisconsideredfinishedwhenitreachesamaximumtokenlimitormeetspredefinedstoppingcriteria.6.Theresponseispost-processedtoimprovereadabilitybyapplyingformatting,punctuationandotherenhancements(suchasbeginningtheresponsewithwordsthatahumanmightuse,suchas‘Sure’,‘Certainly’or‘I’msorry’).WhileGPTsandtheirabilitytoautomaticallygeneratetexthavebeenavailabletoresearcherssince2018,whatmadethelaunchofChatGPTsonovelwasitsfreeaccessviaaneasy-to-useinterface,meaningthatanyonewithinternetaccesscouldexplorethetool.ThelaunchofChatGPTsetoffshockwavesaroundtheworld,andquicklyledtootherglobaltechcompaniesplayingcatch-up,alongsidenumerousstart-upcompanies,eitherbylaunchingtheirownsimilarsystemsorbybuildingnewtoolsontop.ByJuly2023,someofthealternativestoChatGPTincludedthefollowing:●Alpaca:7Afine-tunedversionofMeta’sLlama,fromStanfordUniversity,whichaimstoaddressLLMs’falseinformation,socialstereotypesandtoxiclanguage.●Bard:8AnLLMfromGoogle,basedonitsLaMDAandPaLM2systems,thathtotheinternetinrealtime,whichmeansitcanprovideup-to-dateinformation.●Chatsonic:9MadebyWritesonic,itbuildsonChatGPTwhilealsocrawlingdatadirectlyfromGoogle.Accordingly,ithaslesschanceofproducingfactuallyincorrectanswers.●Ernie(alsoknownasWenxinYiyan文心一言):10AbilingualLLMfromBaidu,stillindevelopment,whichintegratesextensiveknowledgewithmassivedatasetstogeneratetextandimages.●HuggingChat:11MadebyHuggingFace,whoemphasizedethicsandtransparencythroughoutitsdevelopment,traininganddeployment.Inaddition,alldatausedtotraintheirmodelsareopensource.●Jasper:12AsuiteoftoolsandAPIsthat,forexample,canbetrainedtowriteinauser’sparticularpreferredstyle.Itcanalsogenerateimages.●Llama:13Anopen-sourceLLMfromMetathatrequireslesscomputingpowerandfewerresourcestotestnewapproaches,validateothers’workandexplorenewusecases.●OpenAssistant:14Anopen-sourceapproachdesignedtoenableanyonewithsufficientexpertisetodeveloptheirownLLM.Itwasbuiltontrainingdatacuratedbyvolunteers.●TongyiQianwen(通義千問):15AnLLMfromAlibabathatcanrespondtopromptsinEnglishorChinese.ItisbeingintegratedintoAlibaba’ssuiteofbusinesstools.●YouChat:16AnLLMthatincorporatesreal-timesearchcapabilitiestoprovideadditionalcontextandinsightsinordertogeneratemoreaccurateandreliableresults.whilesomeareopen-source.ManyotherproductsarebeinglaunchedthatarebasedoneoftheseLLMs.Examplesincludethefollowing:●ChatPDF:17SummarizesandanswersquestionsaboutsubmittedPDFdocuments.●Elicit:TheAIResearchAssistant:18Aimstoautomatepartsofresearchers’workflows,identifyingrelevantpapersandsummarizingkeyinformation.●Perplexity:19Providesa‘knowledgehub’forpeopleseekingquick,accurateanswerstailoredtotheirneeds.Similarly,LLM-basedtoolsarebeingembeddedintootherproducts,suchaswebbrowsers.Forexample,extensionsfortheChromebrowserthatarebuiltonChatGPTincludethefollowing:●WebChatGPT:20GivesChatGPTinternetaccesstoenablemoreaccurateandup-to-dateconversations.●ComposeAI:21Autocompletessentencesinemailsandelsewhere.●TeamSmartAI:22Providesa‘teamofvirtualassistants●Wiseone:23Simplifiesonlineinformation.Inaddition,ChatGPThasbeenincorporatedintosomesearchengines,24andisbeingimplementedacrosslargeportfoliosofproductivitytools(e.g.MicrosoftWordandExcel),makingitevenmoreavailableinofficesandeducationalinstitutionsworldwide(MurphyFinally,asaninterestingtransitiontoimageGenAI,themostrecentGPTfromOpenAI,GPT-4,isabletoacceptimagesaswellastextinitsprompts.Inthissense,itismultimodal.Accordingly,somearguethatthename‘largelanguagemodel’(LLM)isbecominglessappropriate,whichisonereasonwhyresearchersatStanfordUniversi1.2.2.HowimageGenAImodelsworkImageGenAIandmusicGenAItypicallyuseadifferenttypeofANNknownasgenerativeadversarialnetworks(GANs)whichcanalsobecombinedwithvariationalautoencoders.SomeimageGenAImodelslikeDall·EandStableDiffusionuseDiffusionModels,adifferentgenerativeANN.TakingGANsasexampletoexplainhowimageGenAImodelswork:GANshavetwoparts(two‘a(chǎn)dversaries’),the‘generator’andthe‘discriminatorInthecaseofimageGANs,thegeneratorcreatesarandomimageinresponsetoaprompt,andthediscriminatortriestodistinguishbetweenthisgeneratedimageandrealimages.Thegeneratorthenusestheresultofthediscriminatortoadjustitsparameters,inordertocreateanotherimage.Theprocessisrepeated,possiblythousandsoftimes,withthegeneratormakingmoreandmorerealisticimagesthatthediscriminatorislessandlessabletodistinguishfromrealimages.Forexample,asuccessfulGANtrainedonadatasetofthousandsoflandscapephotographsmightgeneratenewbutunrealimagesoflandscapesthatarealmostindistinguishablefromrealphotographs.Meanwhile,aGANtrainedonadatasetofpopularmusic(orevenmusicbyasingleartist)mightgenerate
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年節(jié)能高效果汁濃縮設(shè)備項(xiàng)目申請(qǐng)報(bào)告模板
- 2025年個(gè)體之間土地轉(zhuǎn)讓策劃合同樣本
- 2025年倉儲(chǔ)租賃安全條款協(xié)議示范
- 2025年買賣雙方貨物運(yùn)輸合同書
- 2025年專賣店裝潢工程合同
- 2025年會(huì)員費(fèi)用結(jié)算示例協(xié)議
- 2025年公寓樓建筑項(xiàng)目合同示例
- 2025年企業(yè)員工租賃住房協(xié)議模版
- 2025年個(gè)人擔(dān)保契約協(xié)議書
- 2025年保安人員租賃合作協(xié)議
- 1《挑戰(zhàn)第一次》第1課時(shí) 說課稿 -2023-2024學(xué)年道德與法治二年級(jí)下冊(cè)統(tǒng)編版
- 湖北省十堰市城區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期末質(zhì)量檢測歷史試題(含答案)
- 2025甘肅省事業(yè)單位聯(lián)考招聘(3141人)高頻重點(diǎn)提升(共500題)附帶答案詳解
- JJF 1176-2024(0~2 300) ℃鎢錸熱電偶校準(zhǔn)規(guī)范
- 礦產(chǎn)資源儲(chǔ)量報(bào)告編制和評(píng)審中常見問題及其處理意見
- 新人教版一年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教案(表格式)
- 2022年福建泉州中考英語真題【含答案】
- 汽車座椅骨架的焊接夾具畢業(yè)設(shè)計(jì)說明書(共23頁)
- 露天礦山職業(yè)危害預(yù)先危險(xiǎn)分析表
- 淺談固定資產(chǎn)的審計(jì)
- WZCK-20系列微機(jī)直流監(jiān)控裝置使用說明書(v1.02)
評(píng)論
0/150
提交評(píng)論