高考數(shù)學(xué)復(fù)習(xí) 第七章 第五節(jié) 推理與證明 文試題_第1頁
高考數(shù)學(xué)復(fù)習(xí) 第七章 第五節(jié) 推理與證明 文試題_第2頁
高考數(shù)學(xué)復(fù)習(xí) 第七章 第五節(jié) 推理與證明 文試題_第3頁
高考數(shù)學(xué)復(fù)習(xí) 第七章 第五節(jié) 推理與證明 文試題_第4頁
高考數(shù)學(xué)復(fù)習(xí) 第七章 第五節(jié) 推理與證明 文試題_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第五節(jié)推理與證明考點一合情推理與演繹推理1.(2012·江西,5)觀察下列事實:|x|+|y|=1的不同整數(shù)解(x,y)的個數(shù)為4,|x|+|y|=2的不同整數(shù)解(x,y)的個數(shù)為8,|x|+|y|=3的不同整數(shù)解(x,y)的個數(shù)為12,…,則|x|+|y|=20的不同整數(shù)解(x,y)的個數(shù)為()A.76B.80C.86D.92解析由已知條件得,|x|+|y|=n(n∈N+)的不同整數(shù)解(x,y)的個數(shù)為4n,所以|x|+|y|=20的不同整數(shù)解(x,y)的個數(shù)為80,故選B.答案B2.(2015·陜西,16)觀察下列等式1-eq\f(1,2)=eq\f(1,2)1-eq\f(1,2)+eq\f(1,3)-eq\f(1,4)=eq\f(1,3)+eq\f(1,4)1-eq\f(1,2)+eq\f(1,3)-eq\f(1,4)+eq\f(1,5)-eq\f(1,6)=eq\f(1,4)+eq\f(1,5)+eq\f(1,6)……據(jù)此規(guī)律,第n個等式可為________.解析等式左邊的特征:第1個等式有2項,第2個有4項,第3個有6項,且正負(fù)交錯,故第n個等式左邊有2n項且正負(fù)交錯,應(yīng)為1-eq\f(1,2)+eq\f(1,3)-eq\f(1,4)+…+eq\f(1,2n-1)-eq\f(1,2n);等式右邊的特征:第1個有1項,第2個有2項,第3個有3項,故第n個有n項,且有前幾個的規(guī)律不難發(fā)現(xiàn)第n個等式右邊應(yīng)為eq\f(1,n+1)+eq\f(1,n+2)+…+eq\f(1,2n).答案1-eq\f(1,2)+eq\f(1,3)-eq\f(1,4)+…+eq\f(1,2n-1)-eq\f(1,2n)=eq\f(1,n+1)+eq\f(1,n+2)+…+eq\f(1,2n)3.(2013·陜西,13)觀察下列等式(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5……照此規(guī)律,第n個等式可為_______________________________________________.解析觀察規(guī)律,等號左側(cè)為(n+1)(n+2)…(n+n),等號右側(cè)分兩部分,一部分是2n,另一部分是1×3×…×(2n-1).答案(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)4.(2014·福建,16)已知集合{a,b,c}={0,1,2},且下列三個關(guān)系:①a≠2;②b=2;③c≠0有且只有一個正確,則100a+10b+c解析可分下列三種情形:(1)若只有①正確,則a≠2,b≠2,c=0,所以a=b=1與集合元素的互異性相矛盾,所以只有①正確是不可能的;(2)若只有②正確,則b=2,a=2,c=0,這與集合元素的互異性相矛盾,所以只有②正確是不可能的;(3)若只有③正確,則c≠0,a=2,b≠2,所以b=0,c=1,所以100a+10b+c=100×2+10×0+1=201.答案2015.(2014·課標(biāo)Ⅰ,14)甲、乙、丙三位同學(xué)被問到是否去過A,B,C三個城市時,甲說:我去過的城市比乙多,但沒去過B城市;乙說:我沒去過C城市;丙說:我們?nèi)巳ミ^同一城市.由此可判斷乙去過的城市為________.解析根據(jù)甲和丙的回答推測乙沒去過B城市,又知乙沒去過C城市,故乙去過A城市.答案A6.(2013·湖南,15)對于E={a1,a2,…,a100}的子集X={ai1,ai2,…,aik},定義X的“特征數(shù)列”為x1,x2,…,x100,其中xi1=xi2=…=xik=1,其余項均為0.例如:子集{a2,a3}的“特征數(shù)列”為0,1,1,0,0,…,0.(1)子集{a1,a3,a5}的“特征數(shù)列”的前3項和等于________.(2)若E的子集P的“特征數(shù)列”p1,p2,…,p100滿足p1=1,pi+pi+1=1,1≤i≤99;E的子集Q的“特征數(shù)列”q1,q2,…,q100滿足q1=1,qj+qj+1+qj+2=1,1≤j≤98,則P∩Q的元素個數(shù)為________.解析(1)根據(jù)題意可知子集{a1,a3,a5}的“特征數(shù)列”為1,0,1,0,1,0,0,…,0,此數(shù)列前3項和為2.(2)根據(jù)題意可寫出子集P的“特征數(shù)列”為1,0,1,0,1,0,…,1,0,則P={a1,a3,…,a2n-1,…,a99}(1≤n≤50),子集Q的“特征數(shù)列”為1,0,0,1,0,0,…,1,0,0,1,則Q={a1,a4,…,a3k-2,…,a100}(1≤k≤34),則P∩Q={a1,a7,a13,…,a97},共有17項.答案(1)2(2)177.(2013·湖北,17)在平面直角坐標(biāo)系中,若點P(x,y)的坐標(biāo)x,y均為整數(shù),則稱點P為格點.若一個多邊形的頂點全是格點,則稱該多邊形為格點多邊形.格點多邊形的面積記為S,其內(nèi)部的格點數(shù)記為N,邊界上的格點數(shù)記為L.例如圖中△ABC是格點三角形,對應(yīng)的S=1,N=0,L=4.(1)圖中格點四邊形DEFG對應(yīng)的S,N,L分別是________;(2)已知格點多邊形的面積可表示為S=aN+bL+c,其中a,b,c為常數(shù).若某格點多邊形對應(yīng)的N=71,L=18,則S=________(用數(shù)值作答).解析由圖形可得四邊形DEFG對應(yīng)的S,N,L分別是3,1,6.再取兩相鄰正方形可計算S,N,L的值為2,0,6.加上已知S=1時N=0,L=4,代入S=aN+bL+c可計算求出a=1,b=eq\f(1,2),c=-1,故當(dāng)N=71,L=18時,S=71+eq\f(1,2)×18-1=79.答案(1)3,1,6(2)798.(2012·陜西,12)觀察下列不等式1+eq\f(1,22)<eq\f(3,2),1+eq\f(1,22)+eq\f(1,32)<eq\f(5,3),1+eq\f(1,22)+eq\f(1,32)+eq\f(1,42)<eq\f(7,4),……照此規(guī)律,第五個不等式為______________________________________________.解析3=2×1+1,5=2×2+1,7=2×3+1,所以第五個不等式右邊的分子為2×5+1=11.故填1+eq\f(1,22)+eq\f(1,32)+eq\f(1,42)+eq\f(1,52)+eq\f(1,62)<eq\f(11,6).答案1+eq\f(1,22)+eq\f(1,32)+eq\f(1,42)+eq\f(1,52)+eq\f(1,62)<eq\f(11,6)9.(2011·陜西,13)觀察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49……照此規(guī)律,第五個等式應(yīng)為______________________________________________.解析觀察等式左側(cè):第一行有1個數(shù)是1,第二行是3個連續(xù)自然數(shù)的和,第一個數(shù)是2,第三行是5個連續(xù)自然數(shù)的和,第一個數(shù)是3,第四行是7個連續(xù)自然數(shù)的和,第一個數(shù)是4,第5行應(yīng)該是9個連續(xù)自然數(shù)的和,第一個數(shù)為5,∴第5行左側(cè):5+6+7+8+9+10+11+12+13;等式右側(cè):第一行1=12,第二行9=32,第三行25=52,第四行49=72,則第5行應(yīng)為81=92.∴第五個等式為5+6+7+8+9+10+11+12+13=81.答案5+6+7+8+9+10+11+12+13=81考點二直接證明與間接證明1.(2014·山東,4)用反證法證明命題“設(shè)a,b為實數(shù),則方程x3+ax+b=0至少有一個實根”時,要做的假設(shè)是()A.方程x3+ax+b=0沒有實根B.方程x3+ax+b=0至多有一個實根C.方程x3+ax+b=0至多有兩個實根D.方程x3+ax+b=0恰好有兩個實根解析至少有一個實根的否定是沒有實根,故做的假設(shè)是“方程x3+ax+b=0沒有實根”.答案A2.(2015·四川,21)已知函數(shù)f(x)=-2xlnx+x2-2ax+a2,其中a>0.(1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性;(2)證明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在區(qū)間(1,+∞)內(nèi)有唯一解.解(1)由已知,函數(shù)f(x)的定義域為(0,+∞),g(x)=f′(x)=2(x-1-lnx-a),所以g′(x)=2-eq\f(2,x)=eq\f(2(x-1),x),當(dāng)x∈(0,1)時,g′(x)<0,g(x)單調(diào)遞減;當(dāng)x∈(1,+∞)時,g′(x)>0,g(x)單調(diào)遞增.(2)由f′(x)=2(x-1-lnx-a)=0,解得a=x-1-lnx,令φ(x)=-2xlnx+x2-2x(x-1-lnx)+(x-1-lnx)2=(1+lnx)2-2xlnx,則φ(1)=1>0,φ(e)=2(2-e)<0,于是,存在x0∈(1,e),使得φ(x0)=0,令a0=x0-1-lnx0=u(x0),其中u(x)=x-1-lnx(x≥1),由u′(x)=1-eq\f(1,x)≥0知,函數(shù)u(x)在區(qū)間(1,+∞)上單調(diào)遞增,故0=u(1)<a0=u(x0)<u(e)=e-2<1,即a0∈(0,1),當(dāng)a=a0時,有f′(x0)=0,f(x0)=φ(x0)=0,再由(1)知,f′(x)在區(qū)間(1,+∞)上單調(diào)遞增,當(dāng)x∈(1,x0)時,f′(x)<0,從而f(x)>f(x0)=0;當(dāng)x∈(x0,+∞)時,f′(x)>0,從而f(x)>f(x0)=0;又當(dāng)x∈(0,1]時,f(x)=(x-a0)2-2xlnx>0,故x∈(0,+∞)時,f(x)≥0,綜上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在區(qū)間(1,+∞)內(nèi)有唯一解.3.(2015·江蘇,20)設(shè)a1,a2,a3,a4是各項為正數(shù)且公差為d(d≠0)的等差數(shù)列.(1)證明:2a1,2a2,2a3,(2)是否存在a1,d,使得a1,aeq\o\al(2,2),aeq\o\al(3,3),aeq\o\al(4,4)依次構(gòu)成等比數(shù)列?并說明理由;(3)是否存在a1,d及正整數(shù)n,k,使得aeq\o\al(n,1),aeq\o\al(n+k,2),aeq\o\al(n+2k,3),aeq\o\al(n+3k,4)依次構(gòu)成等比數(shù)列?并說明理由.(1)證明因為eq\f(2an+1,2an)=2an+1-an=2d(n=1,2,3)是同一個常數(shù),所以2a1,2a2,2a3,2a4依次構(gòu)成等比數(shù)列(2)令a1+d=a,則a1,a2,a3,a4分別為a-d,a,a+d,a+2d(a>d,a>-2d,d≠0).假設(shè)存在a1,d,使得a1,aeq\o\al(2,2),aeq\o\al(3,3),aeq\o\al(4,4)依次構(gòu)成等比數(shù)列,則a4=(a-d)(a+d)3,且(a+d)6=a2(a+2d)4.令t=eq\f(d,a),則1=(1-t)(1+t)3,且(1+t)6=(1+2t)4eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)<t<1,t≠0)),化簡得t3+2t2-2=0(*),且t2=t+1.將t2=t+1代入(*)式,t(t+1)+2(t+1)-2=t2+3t=t+1+3t=4t+1=0,則t=-eq\f(1,4).顯然t=-eq\f(1,4)不是上面方程的解,矛盾,所以假設(shè)不成立.因此不存在a1,d,使得a1,aeq\o\al(2,2),aeq\o\al(3,3),aeq\o\al(4,4)依次構(gòu)成等比數(shù)列.(3)解假設(shè)存在a1,d及正整數(shù)n,k,使得aeq\o\al(n,1),aeq\o\al(n+k,2),aeq\o\al(n+2k,3),aeq\o\al(n+3k,4)依次構(gòu)成等比數(shù)列,則aeq\o\al(n,1)(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k).分別在兩個等式的兩邊同除以aeq\o\al(2(n+k),1)及aeq\o\al(2(n+2k),1),并令t=eq\f(d,a1)eq\b\lc\(\rc\)(\a\vs4\al\co1(t>-\f(1,3),t≠0)),則(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k).將上述兩個等式兩邊取對數(shù),得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t).化簡得2k[ln(1+2t)-ln(1+t)]=n[2ln(1+t)-ln(1+2t)],且3k[ln(1+3t)-ln(1+t)]=n[3ln(1+t)-ln(1+3t)].再將這兩式相除,化簡得ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t)(**).令g(t)=4ln(1+3t)ln(1+t)-ln(1+3t)ln(1+2t)-3ln(1+2t)ln(1+t),則g′(t)=eq\f(2[(1+3t)2ln(1+3t)-3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],(1+t)(1+2t)(1+3t)).令φ(t)=(1+3t)2ln(1+3t)-3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),則φ′(t)=6[(1+3t)ln(1+3t)-2(1+2t)ln(1+2t)+(1+t)ln(1+t)].令φ1(t)=φ′(t),則φ1′(t)=6[3ln(1+3t)-4ln(1+2t)+ln(1+t)].令φ2(t)=φ1′(t),則φ2′(t)=eq\f(12,(1+t)(1+2t)(1+3t))>0.由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ′2(t)>0,知φ2(t),φ1(t),φ(t),g(t)在eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,3),0))和(0,+∞)上均單調(diào).故g(t)只有唯一零點t=0,即方程(**)只有唯一解t=0,故假設(shè)不成立.所以不存在a1,d及正整數(shù)n,k,使得aeq\o\al(n,1),aeq\o\al(n+k,2),aeq\o\al(n+2k,3),aeq\o\al(n+3k,4)依次構(gòu)成等比數(shù)列.4.(2014·天津,20)已知q和n均為給定的大于1的自然數(shù).設(shè)集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.(1)當(dāng)q=2,n=3時,用列舉法表示集合A;(2)設(shè)s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.證明:若an<bn,則s<t.(1)解當(dāng)q=2,n=3時,M={0,1},A={x|x=x1+x2·2+x3·22,xi∈M,i=1,2,3}.可得,A={0,1,2,3,4,5,6,7}.(2)證明由s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,ai,bi∈M,i=1,2,…,n及an<bn,可得s-t=(a1-b1)+(a2-b2)q+…+(an-1-bn-1)qn-2+(an-bn)qn-1≤(q-1)+(q-1)q+…+(q-1)qn-2-qn-1=eq\f((q-1)(1-qn-1),1-q)-qn-1=-1<0.所以,s<t.5.(2012·山東,22)已知函數(shù)f(x)=e

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論