版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2020-2021九年級(jí)培優(yōu)易錯(cuò)試卷二次函數(shù)輔導(dǎo)專題訓(xùn)練及答案解析一、二次函數(shù)1.如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).(1)求這個(gè)二次函數(shù)的解析式;(2)在這條拋物線的對(duì)稱軸右邊的圖象上有一點(diǎn)B,使△AOB的面積等于6,求點(diǎn)B的坐標(biāo);(3)對(duì)于(2)中的點(diǎn)B,在此拋物線上是否存在點(diǎn)P,使∠POB=90°?若存在,求出點(diǎn)P的坐標(biāo),并求出△POB的面積;若不存在,請(qǐng)說(shuō)明理由.【答案】(1)y=x2﹣3x。(2)點(diǎn)B的坐標(biāo)為:(4,4)。(3)存在;理由見解析;【解析】【分析】(1)將原點(diǎn)坐標(biāo)代入拋物線中即可求出k的值,從而求得拋物線的解析式。(2)根據(jù)(1)得出的拋物線的解析式可得出A點(diǎn)的坐標(biāo),也就求出了OA的長(zhǎng),根據(jù)△OAB的面積可求出B點(diǎn)縱坐標(biāo)的絕對(duì)值,然后將符合題意的B點(diǎn)縱坐標(biāo)代入拋物線的解析式中即可求出B點(diǎn)的坐標(biāo),然后根據(jù)B點(diǎn)在拋物線對(duì)稱軸的右邊來(lái)判斷得出的B點(diǎn)是否符合要求即可。(3)根據(jù)B點(diǎn)坐標(biāo)可求出直線OB的解析式,由于OB⊥OP,由此可求出P點(diǎn)的坐標(biāo)特點(diǎn),代入二次函數(shù)解析式可得出P點(diǎn)的坐標(biāo).求△POB的面積時(shí),求出OB,OP的長(zhǎng)度即可求出△BOP的面積?!驹斀狻拷猓海?)∵函數(shù)的圖象與x軸相交于O,∴0=k+1,∴k=﹣1?!噙@個(gè)二次函數(shù)的解析式為y=x2﹣3x。(2)如圖,過(guò)點(diǎn)B做BD⊥x軸于點(diǎn)D,令x2﹣3x=0,解得:x=0或3?!郃O=3?!摺鰽OB的面積等于6,∴AO?BD=6。∴BD=4?!唿c(diǎn)B在函數(shù)y=x2﹣3x的圖象上,∴4=x2﹣3x,解得:x=4或x=﹣1(舍去)。又∵頂點(diǎn)坐標(biāo)為:(1.5,﹣2.25),且2.25<4,∴x軸下方不存在B點(diǎn)?!帱c(diǎn)B的坐標(biāo)為:(4,4)。(3)存在?!唿c(diǎn)B的坐標(biāo)為:(4,4),∴∠BOD=45°,。若∠POB=90°,則∠POD=45°。設(shè)P點(diǎn)坐標(biāo)為(x,x2﹣3x)?!?。若,解得x="4"或x=0(舍去)。此時(shí)不存在點(diǎn)P(與點(diǎn)B重合)。若,解得x="2"或x=0(舍去)。當(dāng)x=2時(shí),x2﹣3x=﹣2。∴點(diǎn)P的坐標(biāo)為(2,﹣2)。∴?!摺螾OB=90°,∴△POB的面積為:PO?BO=××=8。2.已知如圖,拋物線y=x2+bx+c過(guò)點(diǎn)A(3,0),B(1,0),交y軸于點(diǎn)C,點(diǎn)P是該拋物線上一動(dòng)點(diǎn),點(diǎn)P從C點(diǎn)沿拋物線向A點(diǎn)運(yùn)動(dòng)(點(diǎn)P不與點(diǎn)A重合),過(guò)點(diǎn)P作PD∥y軸交直線AC于點(diǎn)D.(1)求拋物線的解析式;(2)求點(diǎn)P在運(yùn)動(dòng)的過(guò)程中線段PD長(zhǎng)度的最大值;(3)△APD能否構(gòu)成直角三角形?若能請(qǐng)直接寫出點(diǎn)P坐標(biāo),若不能請(qǐng)說(shuō)明理由;(4)在拋物線對(duì)稱軸上是否存在點(diǎn)M使|MA﹣MC|最大?若存在請(qǐng)求出點(diǎn)M的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.【答案】(1)y=x2﹣4x+3;(2);(3)點(diǎn)P(1,0)或(2,﹣1);(4)M(2,﹣3).【解析】試題分析:(1)把點(diǎn)A、B的坐標(biāo)代入拋物線解析式,解方程組得到b、c的值,即可得解;(2)求出點(diǎn)C的坐標(biāo),再利用待定系數(shù)法求出直線AC的解析式,再根據(jù)拋物線解析式設(shè)出點(diǎn)P的坐標(biāo),然后表示出PD的長(zhǎng)度,再根據(jù)二次函數(shù)的最值問(wèn)題解答;(3)①∠APD是直角時(shí),點(diǎn)P與點(diǎn)B重合,②求出拋物線頂點(diǎn)坐標(biāo),然后判斷出點(diǎn)P為在拋物線頂點(diǎn)時(shí),∠PAD是直角,分別寫出點(diǎn)P的坐標(biāo)即可;(4)根據(jù)拋物線的對(duì)稱性可知MA=MB,再根據(jù)三角形的任意兩邊之差小于第三邊可知點(diǎn)M為直線CB與對(duì)稱軸交點(diǎn)時(shí),|MA﹣MC|最大,然后利用待定系數(shù)法求出直線BC的解析式,再求解即可.試題解析:解:(1)∵拋物線y=x2+bx+c過(guò)點(diǎn)A(3,0),B(1,0),∴,解得,∴拋物線解析式為y=x2﹣4x+3;(2)令x=0,則y=3,∴點(diǎn)C(0,3),則直線AC的解析式為y=﹣x+3,設(shè)點(diǎn)P(x,x2﹣4x+3).∵PD∥y軸,∴點(diǎn)D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+.∵a=﹣1<0,∴當(dāng)x=時(shí),線段PD的長(zhǎng)度有最大值;(3)①∠APD是直角時(shí),點(diǎn)P與點(diǎn)B重合,此時(shí),點(diǎn)P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線的頂點(diǎn)坐標(biāo)為(2,﹣1).∵A(3,0),∴點(diǎn)P為在拋物線頂點(diǎn)時(shí),∠PAD=45°+45°=90°,此時(shí),點(diǎn)P(2,﹣1).綜上所述:點(diǎn)P(1,0)或(2,﹣1)時(shí),△APD能構(gòu)成直角三角形;(4)由拋物線的對(duì)稱性,對(duì)稱軸垂直平分AB,∴MA=MB,由三角形的三邊關(guān)系,|MA﹣MC|<BC,∴當(dāng)M、B、C三點(diǎn)共線時(shí),|MA﹣MC|最大,為BC的長(zhǎng)度,設(shè)直線BC的解析式為y=kx+b(k≠0),則,解得:,∴直線BC的解析式為y=﹣3x+3.∵拋物線y=x2﹣4x+3的對(duì)稱軸為直線x=2,∴當(dāng)x=2時(shí),y=﹣3×2+3=﹣3,∴點(diǎn)M(2,﹣3),即,拋物線對(duì)稱軸上存在點(diǎn)M(2,﹣3),使|MA﹣MC|最大.點(diǎn)睛:本題是二次函數(shù)綜合題,主要利用了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的最值問(wèn)題,二次函數(shù)的對(duì)稱性以及頂點(diǎn)坐標(biāo)的求解,(2)整理出PD的表達(dá)式是解題的關(guān)鍵,(3)關(guān)鍵在于利用點(diǎn)的坐標(biāo)特征作出判斷,(4)根據(jù)拋物線的對(duì)稱性和三角形的三邊關(guān)系判斷出點(diǎn)M的位置是解題的關(guān)鍵.3.在平面直角坐標(biāo)系xOy中,已知拋物線的頂點(diǎn)坐標(biāo)為(2,0),且經(jīng)過(guò)點(diǎn)(4,1),如圖,直線y=x與拋物線交于A、B兩點(diǎn),直線l為y=﹣1.(1)求拋物線的解析式;(2)在l上是否存在一點(diǎn)P,使PA+PB取得最小值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3)知F(x0,y0)為平面內(nèi)一定點(diǎn),M(m,n)為拋物線上一動(dòng)點(diǎn),且點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等,求定點(diǎn)F的坐標(biāo).【答案】(1)拋物線的解析式為y=x2﹣x+1.(2)點(diǎn)P的坐標(biāo)為(,﹣1).(3)定點(diǎn)F的坐標(biāo)為(2,1).【解析】分析:(1)由拋物線的頂點(diǎn)坐標(biāo)為(2,0),可設(shè)拋物線的解析式為y=a(x-2)2,由拋物線過(guò)點(diǎn)(4,1),利用待定系數(shù)法即可求出拋物線的解析式;(2)聯(lián)立直線AB與拋物線解析式成方程組,通過(guò)解方程組可求出點(diǎn)A、B的坐標(biāo),作點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)B′,連接AB′交直線l于點(diǎn)P,此時(shí)PA+PB取得最小值,根據(jù)點(diǎn)B的坐標(biāo)可得出點(diǎn)B′的坐標(biāo),根據(jù)點(diǎn)A、B′的坐標(biāo)利用待定系數(shù)法可求出直線AB′的解析式,再利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出點(diǎn)P的坐標(biāo);(3)由點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等結(jié)合二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,即可得出(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出關(guān)于x0、y0的方程組,解之即可求出頂點(diǎn)F的坐標(biāo).詳解:(1)∵拋物線的頂點(diǎn)坐標(biāo)為(2,0),設(shè)拋物線的解析式為y=a(x-2)2.∵該拋物線經(jīng)過(guò)點(diǎn)(4,1),∴1=4a,解得:a=,∴拋物線的解析式為y=(x-2)2=x2-x+1.(2)聯(lián)立直線AB與拋物線解析式成方程組,得:,解得:,,∴點(diǎn)A的坐標(biāo)為(1,),點(diǎn)B的坐標(biāo)為(4,1).作點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)B′,連接AB′交直線l于點(diǎn)P,此時(shí)PA+PB取得最小值(如圖1所示).∵點(diǎn)B(4,1),直線l為y=-1,∴點(diǎn)B′的坐標(biāo)為(4,-3).設(shè)直線AB′的解析式為y=kx+b(k≠0),將A(1,)、B′(4,-3)代入y=kx+b,得:,解得:,∴直線AB′的解析式為y=-x+,當(dāng)y=-1時(shí),有-x+=-1,解得:x=,∴點(diǎn)P的坐標(biāo)為(,-1).(3)∵點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等,∴(m-x0)2+(n-y0)2=(n+1)2,∴m2-2x0m+x02-2y0n+y02=2n+1.∵M(jìn)(m,n)為拋物線上一動(dòng)點(diǎn),∴n=m2-m+1,∴m2-2x0m+x02-2y0(m2-m+1)+y02=2(m2-m+1)+1,整理得:(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.∵m為任意值,∴,∴,∴定點(diǎn)F的坐標(biāo)為(2,1).點(diǎn)睛:本題考查了待定系數(shù)法求二次(一次)函數(shù)解析式、二次(一次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、軸對(duì)稱中的最短路徑問(wèn)題以及解方程組,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)解析式;(2)利用兩點(diǎn)之間線段最短找出點(diǎn)P的位置;(3)根據(jù)點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等結(jié)合二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,找出關(guān)于x0、y0的方程組.4.一座拱橋的輪廓是拋物線型(如圖所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.(1)將拋物線放在所給的直角坐標(biāo)系中(如圖所示),其表達(dá)式是的形式.請(qǐng)根據(jù)所給的數(shù)據(jù)求出a,c的值.(2)求支柱MN的長(zhǎng)度.(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計(jì))?請(qǐng)說(shuō)說(shuō)你的理由.【答案】(1)y=-x2+6;(2)5.5米;(3)一條行車道能并排行駛這樣的三輛汽車.【解析】試題分析:(1)根據(jù)題目可知A.B,C的坐標(biāo),設(shè)出拋物線的解析式代入可求解.(2)設(shè)N點(diǎn)的坐標(biāo)為(5,yN)可求出支柱MN的長(zhǎng)度.(3)設(shè)DN是隔離帶的寬,NG是三輛車的寬度和.做GH垂直AB交拋物線于H則可求解.試題解析:(1)根據(jù)題目條件,A、B、C的坐標(biāo)分別是(-10,0)、(0,6)、(10,0).將B、C的坐標(biāo)代入,得解得.∴拋物線的表達(dá)式是.(2)可設(shè)N(5,),于是.從而支柱MN的長(zhǎng)度是10-4.5=5.5米.(3)設(shè)DE是隔離帶的寬,EG是三輛車的寬度和,則G點(diǎn)坐標(biāo)是(7,0)(7=2÷2+2×3).過(guò)G點(diǎn)作GH垂直AB交拋物線于H,則.根據(jù)拋物線的特點(diǎn),可知一條行車道能并排行駛這樣的三輛汽車.5.如圖,在平面直角坐標(biāo)系中,二次函數(shù)交軸于點(diǎn)、,交軸于點(diǎn),在軸上有一點(diǎn),連接.(1)求二次函數(shù)的表達(dá)式;(2)若點(diǎn)為拋物線在軸負(fù)半軸上方的一個(gè)動(dòng)點(diǎn),求面積的最大值;(3)拋物線對(duì)稱軸上是否存在點(diǎn),使為等腰三角形,若存在,請(qǐng)直接寫出所有點(diǎn)的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.【答案】(1)二次函數(shù)的解析式為;(2)當(dāng)時(shí),的面積取得最大值;(3)點(diǎn)的坐標(biāo)為,,.【解析】分析:(1)把已知點(diǎn)坐標(biāo)代入函數(shù)解析式,得出方程組求解即可;(2)根據(jù)函數(shù)解析式設(shè)出點(diǎn)D坐標(biāo),過(guò)點(diǎn)D作DG⊥x軸,交AE于點(diǎn)F,表示△ADE的面積,運(yùn)用二次函數(shù)分析最值即可;(3)設(shè)出點(diǎn)P坐標(biāo),分PA=PE,PA=AE,PE=AE三種情況討論分析即可.詳解:(1)∵二次函數(shù)y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函數(shù)的解析式為:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直線解析式為y=,過(guò)點(diǎn)D作DN⊥x軸,交AE于點(diǎn)F,交x軸于點(diǎn)G,過(guò)點(diǎn)E作EH⊥DF,垂足為H,如圖,設(shè)D(m,),則點(diǎn)F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴當(dāng)m=時(shí),△ADE的面積取得最大值為.(3)y=的對(duì)稱軸為x=﹣1,設(shè)P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求PA=,PE=,AE=,分三種情況討論:當(dāng)PA=PE時(shí),=,解得:n=1,此時(shí)P(﹣1,1);當(dāng)PA=AE時(shí),=,解得:n=,此時(shí)點(diǎn)P坐標(biāo)為(﹣1,);當(dāng)PE=AE時(shí),=,解得:n=﹣2,此時(shí)點(diǎn)P坐標(biāo)為:(﹣1,﹣2).綜上所述:P點(diǎn)的坐標(biāo)為:(﹣1,1),(﹣1,),(﹣1,﹣2).點(diǎn)睛:本題主要考查二次函數(shù)的綜合問(wèn)題,會(huì)求拋物線解析式,會(huì)運(yùn)用二次函數(shù)分析三角形面積的最大值,會(huì)分類討論解決等腰三角形的頂點(diǎn)的存在問(wèn)題時(shí)解決此題的關(guān)鍵.6.如圖,直線y=-x-3與x軸,y軸分別交于點(diǎn)A,C,經(jīng)過(guò)點(diǎn)A,C的拋物線y=ax2+bx﹣3與x軸的另一個(gè)交點(diǎn)為點(diǎn)B(2,0),點(diǎn)D是拋物線上一點(diǎn),過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)E,連接AD,DC.設(shè)點(diǎn)D的橫坐標(biāo)為m.(1)求拋物線的解析式;(2)當(dāng)點(diǎn)D在第三象限,設(shè)△DAC的面積為S,求S與m的函數(shù)關(guān)系式,并求出S的最大值及此時(shí)點(diǎn)D的坐標(biāo);(3)連接BC,若∠EAD=∠OBC,請(qǐng)直接寫出此時(shí)點(diǎn)D的坐標(biāo).【答案】(1)y=x2+x﹣3;(2)S△ADC=﹣(m+3)2+;△ADC的面積最大值為;此時(shí)D(﹣3,﹣);(3)滿足條件的點(diǎn)D坐標(biāo)為(﹣4,﹣3)或(8,21).【解析】【分析】(1)求出A坐標(biāo),再用待定系數(shù)法求解析式;(2)設(shè)DE與AC的交點(diǎn)為點(diǎn)F.設(shè)點(diǎn)D的坐標(biāo)為:(m,m2+m﹣3),則點(diǎn)F的坐標(biāo)為:(m,﹣m﹣3),根據(jù)S△ADC=S△ADF+S△DFC求出解析式,再求最值;(3)①當(dāng)點(diǎn)D與點(diǎn)C關(guān)于對(duì)稱軸對(duì)稱時(shí),D(﹣4,﹣3),根據(jù)對(duì)稱性此時(shí)∠EAD=∠ABC.②作點(diǎn)D(﹣4,﹣3)關(guān)于x軸的對(duì)稱點(diǎn)D′(﹣4,3),直線AD′的解析式為y=x+9,解方程組求出函數(shù)圖像交點(diǎn)坐標(biāo).【詳解】解:(1)在y=﹣x﹣3中,當(dāng)y=0時(shí),x=﹣6,即點(diǎn)A的坐標(biāo)為:(﹣6,0),將A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴拋物線的解析式為:y=x2+x﹣3;(2)設(shè)點(diǎn)D的坐標(biāo)為:(m,m2+m﹣3),則點(diǎn)F的坐標(biāo)為:(m,﹣m﹣3),設(shè)DE與AC的交點(diǎn)為點(diǎn)F.∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC=S△ADF+S△DFC=DF?AE+?DF?OE=DF?OA=×(﹣m2﹣m)×6=﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴拋物線開口向下,∴當(dāng)m=﹣3時(shí),S△ADC存在最大值,又∵當(dāng)m=﹣3時(shí),m2+m﹣3=﹣,∴存在點(diǎn)D(﹣3,﹣),使得△ADC的面積最大,最大值為;(3)①當(dāng)點(diǎn)D與點(diǎn)C關(guān)于對(duì)稱軸對(duì)稱時(shí),D(﹣4,﹣3),根據(jù)對(duì)稱性此時(shí)∠EAD=∠ABC.②作點(diǎn)D(﹣4,﹣3)關(guān)于x軸的對(duì)稱點(diǎn)D′(﹣4,3),直線AD′的解析式為y=x+9,由,解得或,此時(shí)直線AD′與拋物線交于D(8,21),滿足條件,綜上所述,滿足條件的點(diǎn)D坐標(biāo)為(﹣4,﹣3)或(8,21)【點(diǎn)睛】本題屬于二次函數(shù)綜合題,考查了待定系數(shù)法,一次函數(shù)的應(yīng)用,二次函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建二次函數(shù)解決最值問(wèn)題,學(xué)會(huì)構(gòu)建一次函數(shù)解決實(shí)際問(wèn)題,屬于中考?jí)狠S題..7.二次函數(shù)y=x2-2mx+3(m>)的圖象與x軸交于點(diǎn)A(a,0)和點(diǎn)B(a+n,0)(n>0且n為整數(shù)),與y軸交于C點(diǎn).(1)若a=1,①求二次函數(shù)關(guān)系式;②求△ABC的面積;(2)求證:a=m-;(3)線段AB(包括A、B)上有且只有三個(gè)點(diǎn)的橫坐標(biāo)是整數(shù),求a的值.【答案】(1)y=x2-4x+3;3;(2)證明見解析;(3)a=1或a=?.【解析】試題分析:(1)①首先根據(jù)a=1求得A的坐標(biāo),然后代入二次函數(shù)的解析式,求得m的值即可確定二次函數(shù)的解析式;②根據(jù)解析式確定拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo),從而確定三角形的面積;(2)將原二次函數(shù)配方后即可確定其對(duì)稱軸為x=m,然后根據(jù)A、B兩點(diǎn)關(guān)于x=m對(duì)稱得到a+n-m=m-a,從而確定a、m、n之間的關(guān)系;(3)根據(jù)a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,求得m的值即可確定a的值.試題解析:(1)①∵a=1,∴A(1,0),代入y=x2-2mx+3得1-2m+3=0,解得m=2,∴y=x2-4x+3;②在y=x2-4x+3中,當(dāng)y=0時(shí),有x2-4x+3=0可得x=1或x=3,∴A(1,0)、B(3,0),∴AB=2再根據(jù)解析式求出C點(diǎn)坐標(biāo)為(0,3),∴OC=3,△ABC的面積=×2×3=3;(2)∵y=x2-2mx+3=(x-m)2-m2+3,∴對(duì)稱軸為直線x=m,∵二次函數(shù)y=x2-2mx+3的圖象與x軸交于點(diǎn)A和點(diǎn)B∴點(diǎn)A和點(diǎn)B關(guān)于直線x=m對(duì)稱,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化為頂點(diǎn)式為y=(x-m)2-m2+3(m>)①當(dāng)a為整數(shù),因?yàn)閚>0且n為整數(shù)所以a+n是整數(shù),∵線段AB(包括A、B)上有且只有三個(gè)點(diǎn)的橫坐標(biāo)是整數(shù),∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②當(dāng)a不是整數(shù),因?yàn)閚>0且n為整數(shù)所以a+n不是整數(shù),∵線段AB(包括A、B)上有且只有三個(gè)點(diǎn)的橫坐標(biāo)是整數(shù),∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=?,綜上所述:a=1或a=?.考點(diǎn):二次函數(shù)綜合題.8.在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣2x+a﹣3,當(dāng)a=0時(shí),拋物線與y軸交于點(diǎn)A,將點(diǎn)A向右平移4個(gè)單位長(zhǎng)度,得到點(diǎn)B.(1)求點(diǎn)B的坐標(biāo);(2)將拋物線在直線y=a上方的部分沿直線y=a翻折,圖象的其他部分保持不變,得到一個(gè)新的圖象,記為圖形M,若圖形M與線段AB恰有兩個(gè)公共點(diǎn),結(jié)合函數(shù)的圖象,求a的取值范圍.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由題意直接可求A,根據(jù)平移點(diǎn)的特點(diǎn)求B;(2)圖形M與線段AB恰有兩個(gè)公共點(diǎn),y=a要在AB線段的上方,當(dāng)函數(shù)經(jīng)過(guò)點(diǎn)A時(shí),AB與函數(shù)兩個(gè)交點(diǎn)的臨界點(diǎn);【詳解】解:(1)A(0,﹣3),B(4,﹣3);(2)當(dāng)函數(shù)經(jīng)過(guò)點(diǎn)A時(shí),a=0,∵圖形M與線段AB恰有兩個(gè)公共點(diǎn),∴y=a要在AB線段的上方,∴a>﹣3∴﹣3<a≤0;【點(diǎn)睛】本題二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)圖象的特點(diǎn),函數(shù)與線段相交的交點(diǎn)情況是解題的關(guān)鍵.9.已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).(1)求拋物線的解析式;(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?(3)過(guò)點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過(guò)點(diǎn)P做PE∥x軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問(wèn)是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.【答案】(1)拋物線解析式為y=﹣x2+2x+6;(2)當(dāng)t=3時(shí),△PAB的面積有最大值;(3)點(diǎn)P(4,6).【解析】【分析】(1)利用待定系數(shù)法進(jìn)行求解即可得;(2)作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關(guān)于t的函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45°,結(jié)合∠DPE=90°知若△PDE為等腰直角三角形,則∠EDP=45°,從而得出點(diǎn)E與點(diǎn)A重合,求出y=6時(shí)x的值即可得出答案.【詳解】(1)∵拋物線過(guò)點(diǎn)B(6,0)、C(﹣2,0),∴設(shè)拋物線解析式為y=a(x﹣6)(x+2),將點(diǎn)A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過(guò)點(diǎn)P作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM于點(diǎn)G,設(shè)直線AB解析式為y=kx+b,將點(diǎn)A(0,6)、B(6,0)代入,得:,解得:,則直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+,∴當(dāng)t=3時(shí),△PAB的面積有最大值;(3)如圖2,∵PH⊥OB于H,∴∠DHB=∠AOB=90°,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE∥x軸、PD⊥x軸,∴∠DPE=90°,若△PDE為等腰直角三角形,則∠EDP=45°,∴∠EDP與∠BDH互為對(duì)頂角,即點(diǎn)E與點(diǎn)A重合,則當(dāng)y=6時(shí),﹣x2+2x+6=6,解得:x=0(舍)或x=4,即點(diǎn)P(4,6).【點(diǎn)睛】本題考查了二次函數(shù)的綜合問(wèn)題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰直角三角形的判定與性質(zhì)等,熟練掌握和靈活運(yùn)用待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)、等腰直角三角形的判定與性質(zhì)等是解題的關(guān)鍵.10.某商場(chǎng)銷售一種商品的進(jìn)價(jià)為每件30元,銷售過(guò)程中發(fā)現(xiàn)月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系如圖所示.(1)根據(jù)圖象直接寫出y與x之間的函數(shù)關(guān)系式.(2)設(shè)這種商品月利潤(rùn)為W(元),求W與x之間的函數(shù)關(guān)系式.(3)這種商品的銷售單價(jià)定為多少元時(shí),月利潤(rùn)最大?最大月利潤(rùn)是多少?【答案】(1)y=;(2)W=;(3)這種商品的銷售單價(jià)定為65元時(shí),月利潤(rùn)最大,最大月利潤(rùn)是3675.【解析】【分析】(1)當(dāng)40≤x≤60時(shí),設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,當(dāng)60<x≤90時(shí),設(shè)y與x之間的函數(shù)關(guān)系式為y=mx+n,解方程組即可得到結(jié)論;(2)當(dāng)40≤x≤60時(shí),當(dāng)60<x≤90時(shí),根據(jù)題意即可得到函數(shù)解析式;(3)當(dāng)40≤x≤60時(shí),W=-x2+210x-5400,得到當(dāng)x=60時(shí),W最大=-602+210×60-5400=3600,當(dāng)60<x≤90時(shí),W=-3x2+390x-9000,得到當(dāng)x=65時(shí),W最大=-3×652+390×65-9000=3675,于是得到結(jié)論.【詳解】解:(1)當(dāng)40≤x≤60時(shí),設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,將(40,140),(60,120)代入得,解得:,∴y與x之間的函數(shù)關(guān)系式為y=﹣x+180;當(dāng)60<x≤90時(shí),設(shè)y與x之間的函數(shù)關(guān)系式為y=mx+n,將(90,30),(60,120)代入得,解得:,∴y=﹣3x+300;綜上所述,y=;(2)當(dāng)40≤x≤60時(shí),W=(x﹣30)y=(x﹣30)(﹣x+180)=﹣x2+210x﹣5400,當(dāng)60<x≤90時(shí),W=(x﹣30)(﹣3x+300)=﹣3x2+390x﹣9000,綜上所述,W=;(3)當(dāng)40≤x≤60時(shí),W=﹣x2+210x﹣5400,∵﹣1<0,對(duì)稱軸x==105,∴當(dāng)40≤x≤60時(shí),W隨x的增大而增大,∴當(dāng)x=60時(shí),W最大=﹣602+210×60﹣5400=3600,當(dāng)60<x≤90時(shí),W=﹣3x2+390x﹣9000,∵﹣3<0,對(duì)稱軸x==65,∵60<x≤90,∴當(dāng)x=65時(shí),W最大=﹣3×652+390×65﹣9000=3675,∵3675>3600,∴當(dāng)x=65時(shí),W最大=3675,答:這種商品的銷售單價(jià)定為65元時(shí),月利潤(rùn)最大,最大月利潤(rùn)是3675.【點(diǎn)睛】本題考查了把實(shí)際問(wèn)題轉(zhuǎn)化為二次函數(shù),再利用二次函數(shù)的性質(zhì)進(jìn)行實(shí)際應(yīng)用.根據(jù)題意分情況建立二次函數(shù)的模型是解題的關(guān)鍵.11.在平面直角坐標(biāo)系xOy中,已知拋物線的頂點(diǎn)坐標(biāo)為(2,0),且經(jīng)過(guò)點(diǎn)(4,1),如圖,直線y=x與拋物線交于A、B兩點(diǎn),直線l為y=﹣1.(1)求拋物線的解析式;(2)在l上是否存在一點(diǎn)P,使PA+PB取得最小值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3)知F(x0,y0)為平面內(nèi)一定點(diǎn),M(m,n)為拋物線上一動(dòng)點(diǎn),且點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等,求定點(diǎn)F的坐標(biāo).【答案】(1)拋物線的解析式為y=x2﹣x+1.(2)點(diǎn)P的坐標(biāo)為(,﹣1).(3)定點(diǎn)F的坐標(biāo)為(2,1).【解析】分析:(1)由拋物線的頂點(diǎn)坐標(biāo)為(2,0),可設(shè)拋物線的解析式為y=a(x-2)2,由拋物線過(guò)點(diǎn)(4,1),利用待定系數(shù)法即可求出拋物線的解析式;(2)聯(lián)立直線AB與拋物線解析式成方程組,通過(guò)解方程組可求出點(diǎn)A、B的坐標(biāo),作點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)B′,連接AB′交直線l于點(diǎn)P,此時(shí)PA+PB取得最小值,根據(jù)點(diǎn)B的坐標(biāo)可得出點(diǎn)B′的坐標(biāo),根據(jù)點(diǎn)A、B′的坐標(biāo)利用待定系數(shù)法可求出直線AB′的解析式,再利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出點(diǎn)P的坐標(biāo);(3)由點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等結(jié)合二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,即可得出(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出關(guān)于x0、y0的方程組,解之即可求出頂點(diǎn)F的坐標(biāo).詳解:(1)∵拋物線的頂點(diǎn)坐標(biāo)為(2,0),設(shè)拋物線的解析式為y=a(x-2)2.∵該拋物線經(jīng)過(guò)點(diǎn)(4,1),∴1=4a,解得:a=,∴拋物線的解析式為y=(x-2)2=x2-x+1.(2)聯(lián)立直線AB與拋物線解析式成方程組,得:,解得:,,∴點(diǎn)A的坐標(biāo)為(1,),點(diǎn)B的坐標(biāo)為(4,1).作點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)B′,連接AB′交直線l于點(diǎn)P,此時(shí)PA+PB取得最小值(如圖1所示).∵點(diǎn)B(4,1),直線l為y=-1,∴點(diǎn)B′的坐標(biāo)為(4,-3).設(shè)直線AB′的解析式為y=kx+b(k≠0),將A(1,)、B′(4,-3)代入y=kx+b,得:,解得:,∴直線AB′的解析式為y=-x+,當(dāng)y=-1時(shí),有-x+=-1,解得:x=,∴點(diǎn)P的坐標(biāo)為(,-1).(3)∵點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等,∴(m-x0)2+(n-y0)2=(n+1)2,∴m2-2x0m+x02-2y0n+y02=2n+1.∵M(jìn)(m,n)為拋物線上一動(dòng)點(diǎn),∴n=m2-m+1,∴m2-2x0m+x02-2y0(m2-m+1)+y02=2(m2-m+1)+1,整理得:(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.∵m為任意值,∴,∴,∴定點(diǎn)F的坐標(biāo)為(2,1).點(diǎn)睛:本題考查了待定系數(shù)法求二次(一次)函數(shù)解析式、二次(一次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、軸對(duì)稱中的最短路徑問(wèn)題以及解方程組,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)解析式;(2)利用兩點(diǎn)之間線段最短找出點(diǎn)P的位置;(3)根據(jù)點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等結(jié)合二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,找出關(guān)于x0、y0的方程組.12.已知:如圖,拋物線y=ax2+bx+3與坐標(biāo)軸分別交于點(diǎn)A,B(﹣3,0),C(1,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).(1)求拋物線解析式;(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積最大?(3)過(guò)點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過(guò)點(diǎn)P作PE∥x軸交拋物線于點(diǎn)E,連接DE,請(qǐng)問(wèn)是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.【答案】(1)y=﹣x2﹣2x+3(2)(﹣,)(3)存在,P(﹣2,3)或P(,)【解析】【分析】(1)用待定系數(shù)法求解;(2)過(guò)點(diǎn)P作PH⊥x軸于點(diǎn)H,交AB于點(diǎn)F,直線AB解析式為y=x+3,設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0),則F(t,t+3),則PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根據(jù)S△PAB=S△PAF+S△PBF寫出解析式,再求函數(shù)最大值;(3)設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0),則D(t,t+3),PD=﹣t2﹣3t,由拋物線y=﹣x2﹣2x+3=﹣(x+1)2+4,由對(duì)稱軸為直線x=﹣1,PE∥x軸交拋物線于點(diǎn)E,得yE=y(tǒng)P,即點(diǎn)E、P關(guān)于對(duì)稱軸對(duì)稱,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE為等腰直角三角形,∠DPE=90°,得PD=PE,再分情況討論:①當(dāng)﹣3<t≤﹣1時(shí),PE=﹣2﹣2t;②當(dāng)﹣1<t<0時(shí),PE=2+2t【詳解】解:(1)∵拋物線y=ax2+bx+3過(guò)點(diǎn)B(﹣3,0),C(1,0)∴解得:∴拋物線解析式為y=﹣x2﹣2x+3(2)過(guò)點(diǎn)P作PH⊥x軸于點(diǎn)H,交AB于點(diǎn)F∵x=0時(shí),y=﹣x2﹣2x+3=3∴A(0,3)∴直線AB解析式為y=x+3∵點(diǎn)P在線段AB上方拋物線上∴設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△PAB=S△PAF+S△PBF=PF?OH+PF?BH=PF?OB=(﹣t2﹣3t)=﹣(t+)2+∴點(diǎn)P運(yùn)動(dòng)到坐標(biāo)為(﹣,),△PAB面積最大(3)存在點(diǎn)P使△PDE為等腰直角三角形設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0),則D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵拋物線y=﹣x2﹣2x+3=﹣(x+1)2+4∴對(duì)稱軸為直線x=﹣1∵PE∥x軸交拋物線于點(diǎn)E∴yE=y(tǒng)P,即點(diǎn)E、P關(guān)于對(duì)稱軸對(duì)稱∴=﹣1∴xE=﹣2﹣xP=﹣2﹣t∴PE=|xE﹣xP|=|﹣2﹣2t|∵△PDE為等腰直角三角形,∠DPE=90°∴PD=PE①當(dāng)﹣3<t≤﹣1時(shí),PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②當(dāng)﹣1<t<0時(shí),PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)綜上所述,點(diǎn)P坐標(biāo)為(﹣2,3)或(,)時(shí)使△PDE為等腰直角三角形.【點(diǎn)睛】考核知識(shí)點(diǎn):二次函數(shù)的綜合.數(shù)形結(jié)合分析問(wèn)題,運(yùn)用軸對(duì)稱性質(zhì)和等腰三角形性質(zhì)分析問(wèn)題是關(guān)鍵.13.閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過(guò)某點(diǎn)且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點(diǎn)的“特征線”.例如,點(diǎn)M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.問(wèn)題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點(diǎn)B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過(guò)B、C兩點(diǎn),頂點(diǎn)D在正方形內(nèi)部.(1)直接寫出點(diǎn)D(m,n)所有的特征線;(2)若點(diǎn)D有一條特征線是y=x+1,求此拋物線的解析式;(3)點(diǎn)P是AB邊上除點(diǎn)A外的任意一點(diǎn),連接OP,將△OAP沿著OP折疊,點(diǎn)A落在點(diǎn)A′的位置,當(dāng)點(diǎn)A′在平行于坐標(biāo)軸的D點(diǎn)的特征線上時(shí),滿足(2)中條件的拋物線向下平移多少距離,其頂點(diǎn)落在OP上?【答案】(1)x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2);(3)拋物線向下平移或距離,其頂點(diǎn)落在OP上.【解析】試題分析:(1)根據(jù)特征線直接求出點(diǎn)D的特征線;(2)由點(diǎn)D的一條特征線和正方形的性質(zhì)求出點(diǎn)D的坐標(biāo),從而求出拋物線解析式;(2)分平行于x軸和y軸兩種情況,由折疊的性質(zhì)計(jì)算即可.試題解析:解:(1)∵點(diǎn)D(m,n),∴點(diǎn)D(m,n)的特征線是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)點(diǎn)D有一條特征線是y=x+1,∴n﹣m=1,∴n=m+1.∵拋物線解析式為,∴,∵四邊形OABC是正方形,且D點(diǎn)為正方形的對(duì)稱軸,D(m,n),∴B(2m,2m),∴,將n=m+1帶入得到m=2,n=3;∴D(2,3),∴拋物線解析式為.(3)①如圖,當(dāng)點(diǎn)A′在平行于y軸的D點(diǎn)的特征線時(shí):根據(jù)題意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴拋物線需要向下平移的距離==.②如圖,當(dāng)點(diǎn)A′在平行于x軸的D點(diǎn)的特征線時(shí),設(shè)A′(p,3),則OA′=OA=4,OE=3,EA′==,∴A′F=4﹣,設(shè)P(4,c)(c>0),,在Rt△A′FP中,(4﹣)2+(3﹣c)2=c2,∴c=,∴P(4,),∴直線OP解析式為y=x,∴N(2,),∴拋物線需要向下平移的距離=3﹣=.綜上所述:拋物線向下平移或距離,其頂點(diǎn)落在OP上.點(diǎn)睛:此題是二次函數(shù)綜合題,主要考查了折疊的性質(zhì),正方形的性質(zhì),解答本題的關(guān)鍵是用正方形的性質(zhì)求出點(diǎn)D的坐標(biāo).14.如圖,拋物線經(jīng)過(guò)x軸上的點(diǎn)A(1,0)和點(diǎn)B及y軸上的點(diǎn)C,經(jīng)過(guò)B、C兩點(diǎn)的直線為.①求拋物線的解析式.②點(diǎn)P從A出發(fā),在線段AB上以每秒1個(gè)單位的速度向B運(yùn)動(dòng),同時(shí)點(diǎn)E從B出發(fā),在線段BC上以每秒2個(gè)單位的速度向C運(yùn)動(dòng).當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 寶雞職業(yè)技術(shù)學(xué)院《機(jī)械制造裝備設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 包頭職業(yè)技術(shù)學(xué)院《績(jī)效管理模擬實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 包頭鋼鐵職業(yè)技術(shù)學(xué)院《大學(xué)生職業(yè)生涯發(fā)展與就業(yè)指導(dǎo)》2023-2024學(xué)年第一學(xué)期期末試卷
- 蚌埠工商學(xué)院《釀造工藝學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 白城醫(yī)學(xué)高等??茖W(xué)校《衛(wèi)生統(tǒng)計(jì)學(xué)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025版新能源行業(yè)勞務(wù)派遣協(xié)議用工單位合同3篇
- 2025年度環(huán)境監(jiān)測(cè)測(cè)繪合同范本3篇
- 2024年租賃藝術(shù)品展示合同3篇
- 巴中職業(yè)技術(shù)學(xué)院《花卉學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025版高級(jí)房地產(chǎn)顧問(wèn)全權(quán)委托合同3篇
- 2024年秋季新人教PEP版三年級(jí)上冊(cè)英語(yǔ)全冊(cè)教案
- 關(guān)于開展2024年度保密自查自評(píng)專項(xiàng)檢查工作的實(shí)施方案
- 商場(chǎng)反恐防暴應(yīng)急預(yù)案演練方案
- 2024年天津市西青經(jīng)濟(jì)開發(fā)集團(tuán)限公司公開招聘工作人員高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- 智慧物業(yè)管理的區(qū)塊鏈技術(shù)應(yīng)用
- 數(shù)據(jù)庫(kù)設(shè)計(jì)規(guī)范標(biāo)準(zhǔn)
- 公安管理學(xué)試題(含答案)
- 2023年全國(guó)職業(yè)院校技能大賽賽項(xiàng)-ZZ019 智能財(cái)稅基本技能賽題 - 模塊三-答案
- 一例護(hù)理不良事件分析(手術(shù)室異物遺留預(yù)防)
- 先天性甲狀腺功能減低癥專家講座
- 學(xué)校合作檔口合同協(xié)議
評(píng)論
0/150
提交評(píng)論