陜西省師范大學附屬中學2024屆數(shù)學高二上期末學業(yè)水平測試試題含解析_第1頁
陜西省師范大學附屬中學2024屆數(shù)學高二上期末學業(yè)水平測試試題含解析_第2頁
陜西省師范大學附屬中學2024屆數(shù)學高二上期末學業(yè)水平測試試題含解析_第3頁
陜西省師范大學附屬中學2024屆數(shù)學高二上期末學業(yè)水平測試試題含解析_第4頁
陜西省師范大學附屬中學2024屆數(shù)學高二上期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

陜西省師范大學附屬中學2024屆數(shù)學高二上期末學業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的導函數(shù)為()A. B.C. D.2.《九章算術(shù)》是我國古代的數(shù)學巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次從高變低)5個人共出100錢,按照爵位從高到低每人所出錢數(shù)成等差數(shù)列,問這5個人各出多少錢?”在這個問題中,若公士出28錢,則不更出的錢數(shù)為()A.14 B.20C.18 D.163.已知A,B,C是橢圓M:上三點,且A(A在第一象限,B關(guān)于原點對稱,,過A作x軸的垂線交橢圓M于點D,交BC于點E,若直線AC與BC的斜率之積為,則()A.橢圓M的離心率為 B.橢圓M的離心率為C. D.4.下列說法或運算正確的是()A.B.用反證法證明“一個三角形至少有兩個銳角”時需設“一個三角形沒有銳角”C.“,”的否定形式為“,”D.直線不可能與圓相切5.已知m,n表示兩條不同的直線,表示平面,則下列說法正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則6.已知數(shù)列的前n項和為,,,則()A. B.C.1025 D.20497.下列雙曲線中,以為一個焦點,以為一個頂點的雙曲線方程是()A. B.C. D.8.在直三棱柱中,,且,點是棱上的動點,則點到平面距離的最大值是()A. B.C.2 D.9.已知點在拋物線:上,點為拋物線的焦點,,點P到y(tǒng)軸的距離為4,則拋物線C的方程為()A. B.C. D.10.下圖稱為弦圖,是我國古代三國時期趙爽為《周髀算經(jīng)》作注時為證明勾股定理所繪制,我們新教材中利用該圖作為“()”的幾何解釋A.如果,,那么B.如果,那么C.對任意實數(shù)和,有,當且僅當時等號成立D.如果,那么11.橢圓上的點P到直線x+2y-9=0的最短距離為()A. B.C. D.12.函數(shù)的圖像在點處的切線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,正方體中,點E,F(xiàn),G分別是,AB,的中點,則直線與GF所成角的大小是______(用反三角函數(shù)表示)14.在空間直角坐標系中,已知點A,若點P滿足,則_______15.已知雙曲線C的方程為,,,雙曲線C上存在一點P,使得,則實數(shù)a的最大值為___________.16.某學生到某工廠進行勞動實踐,利用打印技術(shù)制作模型.如圖,該模型為一個大圓柱中挖去一個小圓柱后剩余部分(兩個圓柱底面圓的圓心重合),大圓柱的軸截面是邊長為的正方形,小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,打印所用原料的密度為,不考慮打印損耗,制作該模型所需原料的質(zhì)量為________g.(?。┤⒔獯痤}:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓的左、右焦點分別為,.點滿足.(1)求橢圓的離心率;(2)設直線與橢圓相交于,兩點,若直線與圓相交于,兩點,且,求橢圓的方程.18.(12分)(1)已知:方程表示雙曲線;:關(guān)于的不等式有解.若為真,求的取值范圍;(2)已知,,.若p是q的必要不充分條件,求實數(shù)m的取值范圍.19.(12分)如圖,在四棱錐中,平面,底面為矩形,,,為的中點,.請用空間向量知識解答下列問題:(1)求線段的長;(2)若為線段上一點,且,求平面與平面夾角的余弦值.20.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點.(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.21.(12分)已知數(shù)列是公差不為0的等差數(shù)列,數(shù)列是公比為2的等比數(shù)列,是,的等比中項,,.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和.22.(10分)已知橢圓C:,斜率為的直線l與橢圓C交于A、B兩點且(1)求橢圓C的離心率;(2)求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用復合函數(shù)求導法則即可求導.【詳解】,故選:B.2、D【解析】根據(jù)題意,建立等差數(shù)列模型,結(jié)合等差數(shù)列公式求解即可.【詳解】解:根據(jù)題意,設每人所出錢數(shù)成等差數(shù)列,公差為,前項和為,則由題可得,解得,所以不更出的錢數(shù)為.故選:D.3、C【解析】設出點,,的坐標,將點,分別代入橢圓方程兩式作差,構(gòu)造直線和的斜率之積,得到,即可求橢圓的離心率,利用,求出,可知點在軸上,且為的中點,則.【詳解】設,,,則,,,兩式相減并化簡得,即,則,則AB錯誤;∵,,∴,又∵,∴,即,解得,則點在軸上,且為的中點即,則正確.故選:C.4、D【解析】對于A:可以解決;對于B:“一個三角形至少由兩個銳角”的反面是“只有一個銳角或沒有銳角”;對于C:全稱否定必須是全部否定;對于D:需要觀察出所給直線是過定點的.【詳解】A:,故錯誤;B:“一個三角形至少由兩個銳角”的反面是“只有一個銳角或沒有銳角”,所以用反證法時應假設只有一個銳角和沒有銳角兩種情況,故錯誤;C:的否定形式是,故錯誤;D:直線是過定點(-1,0),而圓,圓心為(2,0),半徑為4,定點(-1,0)到圓心的距離為2-(-1)=3<4,故定點在圓內(nèi),故正確;故選:D.5、D【解析】根據(jù)空間直線與平面間的位置關(guān)系判斷【詳解】若,,也可以有,A錯;若,,也可以有,B錯;若,,則或,C錯;若,,則,這是線面垂直的判定定理之一,D正確故選:D6、B【解析】根據(jù)題意得,進而根據(jù)得數(shù)列是等比數(shù)列,公比為,首項為,再根據(jù)等比數(shù)列求和公式求解即可.【詳解】解:因為數(shù)列的前n項和為滿足,所以當時,,解得,當時,,即所以,解得或,因為,所以.所以,,所以當時,,所以,即所以數(shù)列是等比數(shù)列,公比為,首項為,所以故選:B7、C【解析】設出雙曲線方程,根據(jù)題意,求得,即可選擇.【詳解】因為雙曲線的一個焦點是,故可設雙曲線方程為,且;又為一個頂點,故可得,解得,則雙曲線方程為:.故選:.8、D【解析】建立空間直角坐標系,設出點的坐標,運用點到平面的距離公式,求出點到平面距離的最大值.【詳解】解:以為原點,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標第,則,,,設點,故,,.設設平面的法向量為,則即,取,則.所以點到平面距離.當,即時,距離有最大值為.故選:D.【點睛】本題考查空間內(nèi)點到面的距離最值問題,屬于中檔題.9、D【解析】由拋物線定義可得,注意開口方向.詳解】設∵點P到y(tǒng)軸的距離是4∴∵,∴.得:.故選:D.10、C【解析】設圖中直角三角形邊長分別為a,b,則斜邊為,則可表示出陰影面積和正方形面積,根據(jù)圖象關(guān)系,可得即可得答案.【詳解】設圖中全等的直角三角形的邊長分別為a,b,則斜邊為,如圖所示:則四個直角三角形的面積為,正方形的面積為,由圖象可得,四個直角三角形面積之和小于等于正方形的面積,所以,當且僅當時等號成立,所以對任意實數(shù)和,有,當且僅當時等號成立.故選:C11、A【解析】與已知直線平行,與橢圓相切的直線有二條,一條距離最短,一條距離最長,利用相切,求出直線的常數(shù)項,再計算平行線間的距離即可.【詳解】設與已知直線平行,與橢圓相切的直線為,則所以所以橢圓上點P到直線的最短距離為故選:A12、B【解析】求得函數(shù)的導數(shù),計算出和的值,可得出所求切線的點斜式方程,化簡即可.詳解】,,,,因此,所求切線的方程為,即.故選:B.【點睛】本題考查利用導數(shù)求解函圖象的切線方程,考查計算能力,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】連接,由得出直線與GF所成角,再由余弦定理得出直線與GF所成角的大小.【詳解】連接,因為,所以直線與GF所成角為.設,則,,,又異面直線的夾角范圍為,所以直線與GF所成角的大小是.故答案為:14、【解析】設,表示出,,根據(jù)即可得到方程組,解得、、,即可求出的坐標,即可得到的坐標,最后根據(jù)向量模的坐標表示計算可得;【詳解】解:設,所以,,因為,所以,所以,解得,即,所以,所以;故答案為:15、2【解析】設出,根據(jù)條件推出在圓上運動,根據(jù)題意要使雙曲線和圓有交點,則得答案.【詳解】設點,由得:,所以,化簡得:,即滿足條件的點在圓上運動,又點存在于上,故雙曲線與圓有交點,則,即實數(shù)a的最大值為2,故答案為:216、4500【解析】根據(jù)題意可知大圓柱底面圓的半徑,兩圓柱的高,設小圓柱的底面圓的半徑為,再根據(jù)小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,求出小圓柱的底面圓的半徑,然后求出該模型的體積,從而可得出答案.【詳解】解:根據(jù)題意可知大圓柱的底面圓的半徑,兩圓柱的高,設小圓柱的底面圓的半徑為,則有,即,解得,所以該模型的體積為,所以制作該模型所需原料的質(zhì)量為.故答案為:4500.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由及兩點間距離公式可建立等式,消去b,即可求解出,主要兩個根的的要舍去;(2)聯(lián)立直線和橢圓的方程,利用弦長公式求得,再利用幾何關(guān)系求得,代入,可解得c,從而得到橢圓的方程.【詳解】(1)設,,因為,所以,整理得,得(舍),或,所以;(2)由(1)知,,可得橢圓方程為,直線的方程為,A,B兩點的坐標滿足方程組為,消去y并整理,得,解得:,,得方程組的解和,不妨設:,,所以,于是,圓心到直線的距離為,因為,所以,整理得:,得(舍),或,所以橢圓方程為:.【點睛】關(guān)鍵點點睛:本題考查求橢圓的離心率解題關(guān)鍵是找到關(guān)于a,b,c的等量關(guān)系,第二問的關(guān)鍵是聯(lián)立直線與橢圓方程求出交點坐標,利用距離公式建立等量關(guān)系,求出c是求出橢圓方程的關(guān)鍵.18、(1)1m2;(2)(0,1]【解析】(1)由pq為真,可得p真且q假,然后分別求出p真,q假時的的取值范圍,再求交集即可,(2)求得p:1x2,再由p是q的必要不充分條件,得,解不等式組可求得答案【詳解】(1)因為pq為真,所以p真且q假,p真:m1m301m3,q假,則不等式無解,則402m2,所以1m2.(2)依題意,p:1x2,因p是q的必要不充分條件,于是得(不同時取等號),解得0m1,所以實數(shù)m的取值范圍是(0,1].19、(1)(2)【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,由已知可得出,求出的值,即可得解;(2)利用空間向量法可求得平面與平面夾角的余弦值.【小問1詳解】解:平面,,以點為坐標原點,、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,設,則、、、,則,,,則,解得,故.【小問2詳解】解:,則,又、、,所以,,,設為平面的法向量,則,取,可得,顯然,為平面的一個法向量,,因此,平面與平面夾角的余弦值為.20、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設,以為坐標原點建立空間直角坐標系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點,在中,、分別為和中點,,又因平面平面,面,面,平面【小問2詳解】解:設,以為坐標原點如圖建系,則,,所以、,設平面的法向量則,故可取設平面的法向量,則,故可取,因為面與面的夾角余弦

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論