人教版七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題試題(帶答案)-(二)_第1頁(yè)
人教版七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題試題(帶答案)-(二)_第2頁(yè)
人教版七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題試題(帶答案)-(二)_第3頁(yè)
人教版七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題試題(帶答案)-(二)_第4頁(yè)
人教版七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題試題(帶答案)-(二)_第5頁(yè)
已閱讀5頁(yè),還剩43頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一、解答題1.在平面直角坐標(biāo)系中描出下列兩組點(diǎn),分別將每組里的點(diǎn)用線(xiàn)段依次連接起來(lái).第一組:、;第二組:、.(1)線(xiàn)段與線(xiàn)段的位置關(guān)系是;(2)在(1)的條件下,線(xiàn)段、分別與軸交于點(diǎn),.若點(diǎn)為射線(xiàn)上一動(dòng)點(diǎn)(不與點(diǎn),重合).①當(dāng)點(diǎn)在線(xiàn)段上運(yùn)動(dòng)時(shí),連接、,補(bǔ)全圖形,用等式表示、、之間的數(shù)量關(guān)系,并證明.②當(dāng)與面積相等時(shí),求點(diǎn)的坐標(biāo).2.綜合與實(shí)踐課上,同學(xué)們以“一個(gè)直角三角形和兩條平行線(xiàn)”為背景開(kāi)展數(shù)學(xué)活動(dòng),如圖,已知兩直線(xiàn),且是直角三角形,,操作發(fā)現(xiàn):(1)如圖1.若,求的度數(shù);(2)如圖2,若的度數(shù)不確定,同學(xué)們把直線(xiàn)向上平移,并把的位置改變,發(fā)現(xiàn),請(qǐng)說(shuō)明理由.(3)如圖3,若∠A=30°,平分,此時(shí)發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請(qǐng)寫(xiě)出與的數(shù)量關(guān)系并說(shuō)明理由.3.問(wèn)題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度數(shù).小明的思路是:過(guò)P作PE∥AB,通過(guò)平行線(xiàn)性質(zhì),可得∠APC=∠APE+∠CPE=50°+60°=110°.問(wèn)題解決:(1)如圖2,AB∥CD,直線(xiàn)l分別與AB、CD交于點(diǎn)M、N,點(diǎn)P在直線(xiàn)I上運(yùn)動(dòng),當(dāng)點(diǎn)P在線(xiàn)段MN上運(yùn)動(dòng)時(shí)(不與點(diǎn)M、N重合),∠PAB=α,∠PCD=β,判斷∠APC、α、β之間的數(shù)量關(guān)系并說(shuō)明理由;(2)在(1)的條件下,如果點(diǎn)P在線(xiàn)段MN或NM的延長(zhǎng)線(xiàn)上運(yùn)動(dòng)時(shí).請(qǐng)直接寫(xiě)出∠APC、α、B之間的數(shù)量關(guān)系;(3)如圖3,AB∥CD,點(diǎn)P是AB、CD之間的一點(diǎn)(點(diǎn)P在點(diǎn)A、C右側(cè)),連接PA、PC,∠BAP和∠DCP的平分線(xiàn)交于點(diǎn)Q.若∠APC=116°,請(qǐng)結(jié)合(2)中的規(guī)律,求∠AQC的度數(shù).4.如圖,∠EBF=50°,點(diǎn)C是∠EBF的邊BF上一點(diǎn).動(dòng)點(diǎn)A從點(diǎn)B出發(fā)在∠EBF的邊BE上,沿BE方向運(yùn)動(dòng),在動(dòng)點(diǎn)A運(yùn)動(dòng)的過(guò)程中,始終有過(guò)點(diǎn)A的射線(xiàn)AD∥BC.(1)在動(dòng)點(diǎn)A運(yùn)動(dòng)的過(guò)程中,(填“是”或“否”)存在某一時(shí)刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請(qǐng)說(shuō)明理由;(3)當(dāng)AC⊥BC時(shí),直接寫(xiě)出∠BAC的度數(shù)和此時(shí)AD與AC之間的位置關(guān)系.5.如圖①,將一張長(zhǎng)方形紙片沿對(duì)折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對(duì)折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計(jì)算的度數(shù).6.已知:ABCD.點(diǎn)E在CD上,點(diǎn)F,H在AB上,點(diǎn)G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,F(xiàn)M平分∠AFG,EM平分∠GEC,試問(wèn)∠M與α之間有怎樣的數(shù)量關(guān)系(用含α的式子表示∠M)?請(qǐng)寫(xiě)出你的猜想,并加以證明.7.閱讀理解:計(jì)算×﹣×?xí)r,若把與分別各看著一個(gè)整體,再利用分配律進(jìn)行運(yùn)算,可以大大簡(jiǎn)化難度.過(guò)程如下:解:設(shè)為A,為B,則原式=B(1+A)﹣A(1+B)=B+AB﹣A﹣AB=B﹣A=.請(qǐng)用上面方法計(jì)算:①×-×②-.8.先閱讀然后解答提出的問(wèn)題:設(shè)a、b是有理數(shù),且滿(mǎn)足,求ba的值.解:由題意得,因?yàn)閍、b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),由于是無(wú)理數(shù),所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.問(wèn)題:設(shè)x、y都是有理數(shù),且滿(mǎn)足,求x+y的值.9.定義:對(duì)任意一個(gè)兩位數(shù),如果滿(mǎn)足個(gè)位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱(chēng)這個(gè)兩位數(shù)為“奇異數(shù)”.將一個(gè)“奇異數(shù)”的個(gè)位數(shù)字與十位數(shù)字對(duì)調(diào)后得到一個(gè)新的兩位數(shù),把這個(gè)新兩位數(shù)與原兩位數(shù)的和與的商記為例如:,對(duì)調(diào)個(gè)位數(shù)字與十位數(shù)字后得到新兩位數(shù)是,新兩位數(shù)與原兩位數(shù)的和為,和與的商為,所以根據(jù)以上定義,完成下列問(wèn)題:(1)填空:①下列兩位數(shù):,,中,“奇異數(shù)”有.②計(jì)算:..(2)如果一個(gè)“奇異數(shù)”的十位數(shù)字是,個(gè)位數(shù)字是,且請(qǐng)求出這個(gè)“奇異數(shù)”(3)如果一個(gè)“奇異數(shù)”的十位數(shù)字是,個(gè)位數(shù)字是,且滿(mǎn)足,請(qǐng)直接寫(xiě)出滿(mǎn)足條件的的值.10.觀察下來(lái)等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式兩邊的數(shù)字分別是對(duì)稱(chēng)的,且每個(gè)等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱(chēng)這類(lèi)等式為“數(shù)字對(duì)稱(chēng)等式”.(1)根據(jù)以上各等式反映的規(guī)律,使下面等式成為“數(shù)字對(duì)稱(chēng)等式”:52×_____=______×25;(2)設(shè)這類(lèi)等式左邊的兩位數(shù)中,個(gè)位數(shù)字為a,十位數(shù)字為b,且2≤a+b≤9,則用含a,b的式子表示這類(lèi)“數(shù)字對(duì)稱(chēng)等式”的規(guī)律是_______.11.觀察下列各式:;;;……根據(jù)上面的等式所反映的規(guī)律,(1)填空:______;______;(2)計(jì)算:12.三個(gè)自然數(shù)x、y、z組成一個(gè)有序數(shù)組,如果滿(mǎn)足,那么我們稱(chēng)數(shù)組為“蹦蹦數(shù)組”.例如:數(shù)組中,故是“蹦蹦數(shù)組”;數(shù)組中,故不是“蹦蹦數(shù)組”.(1)分別判斷數(shù)組和是否為“蹦蹦數(shù)組”;(2)s和t均是三位數(shù)的自然數(shù),其中s的十位數(shù)字是3,個(gè)位數(shù)字是2,t的百位數(shù)字是2,十位數(shù)字是5,且.是否存在一個(gè)整數(shù)b,使得數(shù)組為“蹦蹦數(shù)組”.若存在,求出b的值;若不存在,請(qǐng)說(shuō)明理由;(3)有一個(gè)三位數(shù)的自然數(shù),百位數(shù)字是1,十位數(shù)字是p,個(gè)位數(shù)字是q,若數(shù)組為“蹦蹦數(shù)組”,且該三位數(shù)是7的倍數(shù),求這個(gè)三位數(shù).13.如圖1在平面直角坐標(biāo)系中,大正方形OABC的邊長(zhǎng)為m厘米,小正方形ODEF的邊長(zhǎng)為n厘米,且|m﹣4|+=0.(1)求點(diǎn)B、點(diǎn)D的坐標(biāo).(2)起始狀態(tài)如圖1所示,將大正方形固定不動(dòng),小正方形以1厘米/秒的速度沿x軸向右平移,如圖2.設(shè)平移的時(shí)間為t秒,在平移過(guò)程中兩個(gè)正方形重疊部分的面積為S平方厘米.①當(dāng)t=1.5時(shí),S=平方厘米;②在2≤t≤4這段時(shí)間內(nèi),小正方形的一條對(duì)角線(xiàn)掃過(guò)的圖形的面積為平方厘米;③在小正方形平移過(guò)程中,若S=2,則小正方形平移的時(shí)間t為秒.(3)將大正方形固定不動(dòng),小正方形從圖1中起始狀態(tài)沿x軸向右平移,在平移過(guò)程中,連接AD,過(guò)D點(diǎn)作DM⊥AD交直線(xiàn)BC于M,∠DAx的角平分線(xiàn)所在直線(xiàn)和∠CMD的角平分線(xiàn)所在直線(xiàn)交于N(不考慮N點(diǎn)與A點(diǎn)重合的情形),求∠ANM的大小并說(shuō)明理由.14.已知,定點(diǎn),分別在直線(xiàn),上,在平行線(xiàn),之間有一動(dòng)點(diǎn).(1)如圖1所示時(shí),試問(wèn),,滿(mǎn)足怎樣的數(shù)量關(guān)系?并說(shuō)明理由.(2)除了(1)的結(jié)論外,試問(wèn),,還可能滿(mǎn)足怎樣的數(shù)量關(guān)系?請(qǐng)畫(huà)圖并證明(3)當(dāng)滿(mǎn)足,且,分別平分和,①若,則__________°.②猜想與的數(shù)量關(guān)系.(直接寫(xiě)出結(jié)論)15.如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),邊長(zhǎng)為2的正方形ABCD(點(diǎn)D與點(diǎn)O重合)和邊長(zhǎng)為4的正方形EFGH的邊CO和GH都在x軸上,且點(diǎn)H坐標(biāo)為(7,0).正方形ABCD以3個(gè)單位長(zhǎng)度/秒的速度沿著x軸向右運(yùn)動(dòng),記正方形ABCD和正方形EFGH重疊部分的面積為S,假設(shè)運(yùn)動(dòng)時(shí)間為t秒,且t<4.(1)點(diǎn)F的坐標(biāo)為;(2)如圖2,正方形ABCD向右運(yùn)動(dòng)的同時(shí),動(dòng)點(diǎn)P在線(xiàn)段FE上,以1個(gè)單位長(zhǎng)度/秒的速度從F到E運(yùn)動(dòng).連接AP,AE.①求t為何值時(shí),AP所在直線(xiàn)垂直于x軸;②求t為何值時(shí),S=S△APE.16.在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn),,如果,則稱(chēng)與互為“距點(diǎn)”.例如:點(diǎn),點(diǎn),由,可得點(diǎn)與互為“距點(diǎn)”.(1)在點(diǎn),,中,原點(diǎn)的“距點(diǎn)”是_____(填字母);(2)已知點(diǎn),點(diǎn),過(guò)點(diǎn)作平行于軸的直線(xiàn).①當(dāng)時(shí),直線(xiàn)上點(diǎn)的“距點(diǎn)”的坐標(biāo)為_(kāi)____;②若直線(xiàn)上存在點(diǎn)的“點(diǎn)”,求的取值范圍.(3)已知點(diǎn),,,的半徑為,若在線(xiàn)段上存在點(diǎn),在上存在點(diǎn),使得點(diǎn)與點(diǎn)互為“距點(diǎn)”,直接寫(xiě)出的取值范圍.17.在平面直角坐標(biāo)系中,點(diǎn),滿(mǎn)足關(guān)系式.(1)求,的值;(2)若點(diǎn)滿(mǎn)足的面積等于,求的值;(3)線(xiàn)段與軸交于點(diǎn),動(dòng)點(diǎn)從點(diǎn)出發(fā),在軸上以每秒個(gè)單位長(zhǎng)度的速度向下運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),問(wèn)為何值時(shí)有,請(qǐng)直接寫(xiě)出的值.18.在平面直角坐標(biāo)系中,,滿(mǎn)足.(1)直接寫(xiě)出、的值:;;(2)如圖1,若點(diǎn)滿(mǎn)足的面積等于6,求的值;(3)設(shè)線(xiàn)段交軸于C,動(dòng)點(diǎn)E從點(diǎn)C出發(fā),在軸上以每秒1個(gè)單位長(zhǎng)度的速度向下運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)出發(fā),在軸上以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),若它們同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為秒,問(wèn)為何值時(shí),有?請(qǐng)求出的值.19.?dāng)?shù)學(xué)活動(dòng)課上,小新和小葵各自拿著不同的長(zhǎng)方形紙片在做數(shù)學(xué)問(wèn)題探究.(1)小新經(jīng)過(guò)測(cè)量和計(jì)算得到長(zhǎng)方形紙片的長(zhǎng)寬之比為3:2,面積為30,請(qǐng)求出該長(zhǎng)方形紙片的長(zhǎng)和寬;(2)小葵在長(zhǎng)方形內(nèi)畫(huà)出邊長(zhǎng)為a,b的兩個(gè)正方形(如圖所示),其中小正方形的一條邊在大正方形的一條邊上,她經(jīng)過(guò)測(cè)量和計(jì)算得到長(zhǎng)方形紙片的周長(zhǎng)為50,陰影部分兩個(gè)長(zhǎng)方形的周長(zhǎng)之和為30,由此她判斷大正方形的面積為100,間小葵的判斷正確嗎?請(qǐng)說(shuō)明理由.20.某企業(yè)用規(guī)格是170cm×40cm的標(biāo)準(zhǔn)板材作為原材料,按照?qǐng)D①所示的裁法一或裁法二,裁剪出甲型與乙型兩種板材(單位:cm).(1)求圖中a、b的值;(2)若將40張標(biāo)準(zhǔn)板材按裁法一裁剪,5張標(biāo)準(zhǔn)板材按裁法二裁剪,裁剪后將得到的甲型與乙型板材做側(cè)面或底面,做成如圖②所示的豎式與橫式兩種無(wú)蓋的裝飾盒若干個(gè)(接縫處的長(zhǎng)度忽略不計(jì)).①一共可裁剪出甲型板材張,乙型板材張;②恰好一共可以做出豎式和橫式兩種無(wú)蓋裝飾盒子多少個(gè)?21.甲從A地出發(fā)步行到B地,乙同時(shí)從B地步行出發(fā)至A地,2小時(shí)后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小時(shí).若設(shè)甲剛出發(fā)時(shí)的速度為a千米/小時(shí),乙剛出發(fā)的速度為b千米/小時(shí).(1)A、B兩地的距離可以表示為千米(用含a,b的代數(shù)式表示);(2)甲從A到B所用的時(shí)間是:小時(shí)(用含a,b的代數(shù)式表示);乙從B到A所用的時(shí)間是:小時(shí)(用含a,b的代數(shù)式表示).(3)若當(dāng)甲到達(dá)B地后立刻按原路向A返行,當(dāng)乙到達(dá)A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小時(shí)36分鐘又再次相遇,請(qǐng)問(wèn)AB兩地的距離為多少?22.平面直角坐標(biāo)系中,A(a,0),B(0,b),a,b滿(mǎn)足,將線(xiàn)段AB平移得到CD,A,B的對(duì)應(yīng)點(diǎn)分別為C,D,其中點(diǎn)C在y軸負(fù)半軸上.(1)求A,B兩點(diǎn)的坐標(biāo);(2)如圖1,連AD交BC于點(diǎn)E,若點(diǎn)E在y軸正半軸上,求的值;(3)如圖2,點(diǎn)F,G分別在CD,BD的延長(zhǎng)線(xiàn)上,連結(jié)FG,∠BAC的角平分線(xiàn)與∠DFG的角平分線(xiàn)交于點(diǎn)H,求∠G與∠H之間的數(shù)量關(guān)系.23.已知,在平面直角坐標(biāo)系中,三角形三個(gè)頂點(diǎn)的坐標(biāo)分別為,,,軸,且、滿(mǎn)足.(1)則______;______;______;(2)如圖1,在軸上是否存在點(diǎn),使三角形的面積等于三角形的面積?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;(3)如圖2,連接交于點(diǎn),點(diǎn)在軸上,若三角形的面積小于三角形的面積,直接寫(xiě)出的取值范圍是______.24.學(xué)校組織名同學(xué)和名教師參加校外學(xué)習(xí)交流活動(dòng)現(xiàn)打算選租大、小兩種客車(chē),大客車(chē)載客量為人/輛,小客車(chē)載客量為人/輛(1)學(xué)校準(zhǔn)備租用輛客車(chē),有幾種租車(chē)方案?(2)在(1)的條件下,若大客車(chē)租金為元/輛,小客車(chē)租金為元/輛,哪種租車(chē)方案最省錢(qián)?(3)學(xué)校臨時(shí)增加名學(xué)生和名教師參加活動(dòng),每輛大客車(chē)有2名教師帶隊(duì),每輛小客車(chē)至少有名教師帶隊(duì).同學(xué)先坐滿(mǎn)大客車(chē),再依次坐滿(mǎn)小客車(chē),最后一輛小客車(chē)至少要有人,請(qǐng)你幫助設(shè)計(jì)租車(chē)方案25.閱讀材料:關(guān)于x,y的二元一次方程ax+by=c有一組整數(shù)解,則方程ax+by=c的全部整數(shù)解可表示為(t為整數(shù)).問(wèn)題:求方程7x+19y=213的所有正整數(shù)解.小明參考閱讀材料,解決該問(wèn)題如下:解:該方程一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)榻獾茫驗(yàn)閠為整數(shù),所以t=0或-1.所以該方程的正整數(shù)解為和.(1)方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則=;(2)請(qǐng)你參考小明的解題方法,求方程2x+3y=24的全部正整數(shù)解;(3)方程19x+8y=1908的正整數(shù)解有多少組?請(qǐng)直接寫(xiě)出答案.26.材料1:我們把形如(、、為常數(shù))的方程叫二元一次方程.若、、為整數(shù),則稱(chēng)二元一次方程為整系數(shù)方程.若是,的最大公約數(shù)的整倍數(shù),則方程有整數(shù)解.例如方程都有整數(shù)解;反過(guò)來(lái)也成立.方程都沒(méi)有整數(shù)解,因?yàn)?,3的最大公約數(shù)是3,而10不是3的整倍數(shù);4,2的最大公約數(shù)是2,而1不是2的整倍數(shù).材料2:求方程的正整數(shù)解.解:由已知得:……①設(shè)(為整數(shù)),則……②把②代入①得:.所以方程組的解為,根據(jù)題意得:.解不等式組得0<<.所以的整數(shù)解是1,2,3.所以方程的正整數(shù)解是:,,.根據(jù)以上材料回答下列問(wèn)題:(1)下列方程中:①,②,③,④,⑤,⑥.沒(méi)有整數(shù)解的方程是(填方程前面的編號(hào));(2)仿照上面的方法,求方程的正整數(shù)解;(3)若要把一根長(zhǎng)30的鋼絲截成2長(zhǎng)和3長(zhǎng)兩種規(guī)格的鋼絲(兩種規(guī)格都要有),問(wèn)怎樣截才不浪費(fèi)材料?你有幾種不同的截法?(直接寫(xiě)出截法,不要求解題過(guò)程)27.某加工廠用52500元購(gòu)進(jìn)A、B兩種原料共40噸,其中原料A每噸1500元,原料B每噸1000元.由于原料容易變質(zhì),該加工廠需盡快將這批原料運(yùn)往有保質(zhì)條件的倉(cāng)庫(kù)儲(chǔ)存.經(jīng)市場(chǎng)調(diào)查獲得以下信息:①將原料運(yùn)往倉(cāng)庫(kù)有公路運(yùn)輸與鐵路運(yùn)輸兩種方式可供選擇,其中公路全程120千米,鐵路全程150千米;②兩種運(yùn)輸方式的運(yùn)輸單價(jià)不同(單價(jià):每噸每千米所收的運(yùn)輸費(fèi));③公路運(yùn)輸時(shí),每噸每千米還需加收1元的燃油附加費(fèi);④運(yùn)輸還需支付原料裝卸費(fèi):公路運(yùn)輸時(shí),每噸裝卸費(fèi)100元;鐵路運(yùn)輸時(shí),每噸裝卸費(fèi)220元.(1)加工廠購(gòu)進(jìn)A、B兩種原料各多少?lài)???)由于每種運(yùn)輸方式的運(yùn)輸能力有限,都無(wú)法單獨(dú)承擔(dān)這批原料的運(yùn)輸任務(wù).加工廠為了盡快將這批原料運(yùn)往倉(cāng)庫(kù),決定將A原料選一種方式運(yùn)輸,B原料用另一種方式運(yùn)輸,哪種方案運(yùn)輸總花費(fèi)較少?請(qǐng)說(shuō)明理由.28.某超市分別以每盞150元,190元的進(jìn)價(jià)購(gòu)進(jìn)A,B兩種品牌的護(hù)眼燈,下表是近兩天的銷(xiāo)售情況.銷(xiāo)售日期銷(xiāo)售數(shù)量(盞)銷(xiāo)售收入(元)A品牌B品牌第一天21680第二天341670(1)求A,B兩種品牌護(hù)眼燈的銷(xiāo)售價(jià);(2)若超市準(zhǔn)備用不超過(guò)4900元的金額購(gòu)進(jìn)這兩種品牌的護(hù)眼燈共30盞,求B品牌的護(hù)眼燈最多采購(gòu)多少盞?29.在平面直角坐標(biāo)系中,如圖正方形的頂點(diǎn),坐標(biāo)分別為,,點(diǎn),坐標(biāo)分別為,,且,以為邊作正方形.設(shè)正方形與正方形重疊部分面積為.(1)①當(dāng)點(diǎn)與點(diǎn)重合時(shí),的值為_(kāi)_____;②當(dāng)點(diǎn)與點(diǎn)重合時(shí),的值為_(kāi)_____.(2)請(qǐng)用含的式子表示,并直接寫(xiě)出的取值范圍.30.某生態(tài)柑橘園現(xiàn)有柑橘21噸,計(jì)劃租用A,B兩種型號(hào)的貨車(chē)將柑橘運(yùn)往外地銷(xiāo)售.已知滿(mǎn)載時(shí),用2輛A型車(chē)和3輛B型車(chē)一次可運(yùn)柑橘12噸;用3輛A型車(chē)和4輛B型車(chē)一次可運(yùn)柑橘17噸.(1)1輛A型車(chē)和1輛B型車(chē)滿(mǎn)載時(shí)一次分別運(yùn)柑橘多少?lài)???)若計(jì)劃租用A型貨車(chē)m輛,B型貨車(chē)n輛,一次運(yùn)完全部柑橘,且每輛車(chē)均為滿(mǎn)載.①請(qǐng)幫柑橘園設(shè)計(jì)租車(chē)方案;②若A型車(chē)每輛需租金120元/次,B型車(chē)每輛需租金100元/次.請(qǐng)選出最省錢(qián)的租車(chē)方案,并求出最少租車(chē)費(fèi).【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1)AC∥DE;(2)①∠CAM+∠MDE=∠AMD,證明見(jiàn)解析;②點(diǎn)M的坐標(biāo)為(0,)或(0,).【分析】(1)根據(jù)兩點(diǎn)的縱坐標(biāo)相等,連線(xiàn)平行x軸進(jìn)行判斷即可;(2)①過(guò)點(diǎn)M作MN∥AC,運(yùn)用平行線(xiàn)的判定和性質(zhì)即可;②設(shè)M(0,m),分兩種情況:(i)當(dāng)點(diǎn)M在線(xiàn)段OB上時(shí),(ii)當(dāng)點(diǎn)M在線(xiàn)段OB的延長(zhǎng)線(xiàn)上時(shí),分別運(yùn)用三角形面積公式進(jìn)行計(jì)算即可.【詳解】解:(1)∵A(?3,3)、C(4,3),∴AC∥x軸,∵D(?2,?1)、E(2,?1),∴DE∥x軸,∴AC∥DE;(2)①如圖,∠CAM+∠MDE=∠AMD.理由如下:過(guò)點(diǎn)M作MN∥AC,∵M(jìn)N∥AC(作圖),∴∠CAM=∠AMN(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等),∵AC∥DE(已知),∴MN∥DE(平行公理推論),∴∠MDE=∠NMD(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等),∴∠CAM+∠MDE=∠AMN+∠NMD=∠AMD(等量代換).②由題意,得:AC=7,DE=4,設(shè)M(0,m),(i)當(dāng)點(diǎn)M在線(xiàn)段OB上時(shí),BM=3?m,F(xiàn)M=m+1,∴S△ACM=AC?BM=×7×(3?m)=,S△DEM=DE?FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);(ii)當(dāng)點(diǎn)M在線(xiàn)段OB的延長(zhǎng)線(xiàn)上時(shí),BM=m?3,F(xiàn)M=m+1,∴S△ACM=AC?BM=×7×(m?3)=,S△DEM=DE?FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);綜上所述,點(diǎn)M的坐標(biāo)為(0,)或(0,).【點(diǎn)睛】本題考查了三角形面積,平行坐標(biāo)軸的直線(xiàn)上的點(diǎn)的坐標(biāo)的特征,平行線(xiàn)的判定和性質(zhì)等,解題關(guān)鍵是運(yùn)用數(shù)形結(jié)合思想和分類(lèi)討論思想.2.(1)42°;(2)見(jiàn)解析;(3)∠1=∠2,理由見(jiàn)解析【分析】(1)由平角定義求出∠3=42°,再由平行線(xiàn)的性質(zhì)即可得出答案;(2)過(guò)點(diǎn)B作BD∥a.由平行線(xiàn)的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC-∠DBC=60°-∠1,進(jìn)而得出結(jié)論;(3)過(guò)點(diǎn)C

作CP∥a,由角平分線(xiàn)定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線(xiàn)的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:過(guò)點(diǎn)B作BD∥a.如圖2所示:則∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:過(guò)點(diǎn)C

作CP∥a,如圖3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【點(diǎn)睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線(xiàn)的判定與性質(zhì)、角平分線(xiàn)定義、平角的定義等知識(shí);本題綜合性強(qiáng),熟練掌握平移的性質(zhì)和平行線(xiàn)的性質(zhì)是解題的關(guān)鍵.3.(1)∠APC=α+β,理由見(jiàn)解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)過(guò)點(diǎn)P作PE∥AB,根據(jù)平行線(xiàn)的判定與性質(zhì)即可求解;(2)分點(diǎn)P在線(xiàn)段MN或NM的延長(zhǎng)線(xiàn)上運(yùn)動(dòng)兩種情況,根據(jù)平行線(xiàn)的判定與性質(zhì)及角的和差即可求解;(3)過(guò)點(diǎn)P,Q分別作PE∥AB,QF∥AB,根據(jù)平行線(xiàn)的判定與性質(zhì)及角的和差即可求解.【詳解】解:(1)如圖2,過(guò)點(diǎn)P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如圖,在(1)的條件下,如果點(diǎn)P在線(xiàn)段MN的延長(zhǎng)線(xiàn)上運(yùn)動(dòng)時(shí),∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如圖,在(1)的條件下,如果點(diǎn)P在線(xiàn)段NM的延長(zhǎng)線(xiàn)上運(yùn)動(dòng)時(shí),∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如圖3,過(guò)點(diǎn)P,Q分別作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=∠BAP,∠DCQ=∠PCD,∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°,∵AB∥QF∥CD,∴∠BAQ=∠AQF,∠DCQ=∠CQF,∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,∴∠AQC=58°.【點(diǎn)睛】此題考查了平行線(xiàn)的判定與性質(zhì),添加輔助線(xiàn)將兩條平行線(xiàn)相關(guān)的角聯(lián)系到一起是解題的關(guān)鍵.4.(1)是;(2)∠B=∠ACB,證明見(jiàn)解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線(xiàn)的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;(2)根據(jù)角平分線(xiàn)可得∠EAD=∠CAD,由平行線(xiàn)的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線(xiàn)的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線(xiàn)的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點(diǎn)睛】此題考查了角平分線(xiàn)和平行線(xiàn)的性質(zhì),熟練掌握角平分線(xiàn)和平行線(xiàn)的有關(guān)性質(zhì)是解題的關(guān)鍵.5.(1);(2)①;②【分析】(1)由平行線(xiàn)的性質(zhì)得到,由折疊的性質(zhì)可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線(xiàn)的性質(zhì)得到,再由折疊的性質(zhì)及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質(zhì)得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點(diǎn)睛】此題考查了平行線(xiàn)的性質(zhì),屬于綜合題,有一定難度,熟記“兩直線(xiàn)平行,同位角相等”、“兩直線(xiàn)平行,內(nèi)錯(cuò)角相等”及折疊的性質(zhì)是解題的關(guān)鍵.6.(1)見(jiàn)解析;(2),證明見(jiàn)解析.【分析】(1)由平行線(xiàn)的性質(zhì)得到,等量代換得出,即可根據(jù)“同位角相等,兩直線(xiàn)平行”得解;(2)過(guò)點(diǎn)作,過(guò)點(diǎn)作,根據(jù)平行線(xiàn)的性質(zhì)及角平分線(xiàn)的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過(guò)點(diǎn)作,過(guò)點(diǎn)作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點(diǎn)睛】此題考查了平行線(xiàn)的判定與性質(zhì),熟記平行線(xiàn)的判定與性質(zhì)及作出合理的輔助線(xiàn)是解題的關(guān)鍵.7.(1);(2).【分析】①根據(jù)發(fā)現(xiàn)的規(guī)律得出結(jié)果即可;②根據(jù)發(fā)現(xiàn)的規(guī)律將所求式子變形,約分即可得到結(jié)果.【詳解】(1)設(shè)為A,為B,原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=;(2)設(shè)為A,為B,原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=.【點(diǎn)睛】考查了有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.8.7或-1.【分析】根據(jù)題目中給出的方法,對(duì)所求式子進(jìn)行變形,求出x、y的值,進(jìn)而可求x+y的值.【詳解】解:∵,∴,∴=0,=0∴x=±4,y=3當(dāng)x=4時(shí),x+y=4+3=7當(dāng)x=-4時(shí),x+y=-4+3=-1∴x+y的值是7或-1.【點(diǎn)睛】本題考查實(shí)數(shù)的運(yùn)算,解題的關(guān)鍵是弄清題中給出的解答方法,然后運(yùn)用類(lèi)比的思想進(jìn)行解答.9.(1)①,②,;(2);(3)【分析】(1)①由“奇異數(shù)”的定義可得;②根據(jù)定義計(jì)算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根據(jù)題意可列出等式,可求出x、y的值,即可求的值.【詳解】解:(1)①∵對(duì)任意一個(gè)兩位數(shù)a,如果a滿(mǎn)足個(gè)位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱(chēng)這個(gè)兩位數(shù)為“奇異數(shù)”.∴“奇異數(shù)”為21;②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n;(2)∵f(10m+n)=m+n,且f(b)=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根據(jù)題意有∵∴∴∵x、y為正數(shù),且x≠y∴x=6,y=5∴a=6×10+5=65故答案為:(1)①,②,;(2);(3)【點(diǎn)睛】本題考查了新定義下的實(shí)數(shù)運(yùn)算,能理解“奇異數(shù)”定義是本題的關(guān)鍵.10.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【分析】(1)觀察等式,發(fā)現(xiàn)規(guī)律,等式的左邊:兩位數(shù)所乘的數(shù)是這個(gè)兩位數(shù)的個(gè)位數(shù)字變?yōu)榘傥粩?shù)字,十位數(shù)字變?yōu)閭€(gè)位數(shù)字,兩個(gè)數(shù)字的和放在十位;等式的右邊:三位數(shù)與左邊的三位數(shù)字百位與個(gè)位數(shù)字交換,兩位數(shù)與左邊的兩位數(shù)十位與個(gè)位數(shù)字交換然后相乘,根據(jù)此規(guī)律進(jìn)行填空即可;(2)按照(1)中對(duì)稱(chēng)等式的方法寫(xiě)出,然后利用多項(xiàng)式的乘法進(jìn)行寫(xiě)出即可.【詳解】解:(1)∵5+2=7,∴左邊的三位數(shù)是275,右邊的三位數(shù)是572,∴52×275=572×25,(2)左邊的兩位數(shù)是10b+a,三位數(shù)是100a+10(a+b)+b;右邊的兩位數(shù)是10a+b,三位數(shù)是100b+10(a+b)+a;“數(shù)字對(duì)稱(chēng)等式”為:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案為275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【點(diǎn)睛】本題是對(duì)數(shù)字變化規(guī)律的考查,根據(jù)已知信息,理清利用左邊的兩位數(shù)的十位數(shù)字與個(gè)位數(shù)字變化得到其它的三個(gè)數(shù)字是解題的關(guān)鍵.11.(1);;(2).【分析】(1)根據(jù)已知數(shù)據(jù)得出規(guī)律,,進(jìn)而求出即可;(2)利用規(guī)律拆分,再進(jìn)一步交錯(cuò)約分得出答案即可.【詳解】解:(1);;(2)===.【點(diǎn)睛】此題主要考查了實(shí)數(shù)運(yùn)算中的規(guī)律探索,根據(jù)已知運(yùn)算得出數(shù)字之間的變化規(guī)律是解決問(wèn)題的關(guān)鍵.12.(1)(437,307,177)是“蹦蹦數(shù)組”,(601,473,346)不是“蹦蹦數(shù)組”;(2)存在,數(shù)組為(532,395,258);(3)這個(gè)三位數(shù)是147.【分析】(1)由“蹦蹦數(shù)組”的定義進(jìn)行驗(yàn)證即可;(2)設(shè)s為,t為,則,先后求得n、s的值,根據(jù)“蹦蹦數(shù)組”的定義即可求解;(3)設(shè)這個(gè)數(shù)為,則,由和都是0到9的正整數(shù),列舉法即可得出這個(gè)三位數(shù).【詳解】解:(1)數(shù)組(437,307,177)中,437-307=130,307-177=130,∴437-307=307-177,故(437,307,177)是“蹦蹦數(shù)組”;數(shù)組(601,473,346)中,601-473=128,473-346=127,∴601-473473-346,故(601,473,346)不是“蹦蹦數(shù)組”;(2)設(shè)s為,t為,則,∵m、n為整數(shù),∴,則t為258,∴s為532,而,則b為532-137=395,驗(yàn)算:532-395=395-258=137,故數(shù)組為(532,395,258);(3)根據(jù)題意,設(shè)這個(gè)數(shù)為,則,∴,而和都是0到9的正整數(shù),討論:p12345q13579111123135147159而是7的倍數(shù)的三位數(shù)只有147,且1-4=4-7=-3,數(shù)組(1,4,7)為“蹦蹦數(shù)組”,故這個(gè)三位數(shù)是147.【點(diǎn)睛】本題是一道新定義題目,解決的關(guān)鍵是能夠根據(jù)定義,通過(guò)列舉法找到合適的數(shù),進(jìn)而求解.13.(1);(2)①3,②4,③1或5;(3),理由見(jiàn)解析【分析】(1)由非負(fù)性的性質(zhì)以及算數(shù)平方根的性質(zhì)可得出的值,可答案可求出;(2)①1.5秒時(shí),小正方形向右移動(dòng)1.5厘米,即可計(jì)算出重疊部分的面積;②畫(huà)出圖形,計(jì)算所得圖形面積即可;③小正方形的高不變,根據(jù)面積即可求出小正方形平移的距離和時(shí)間;(3)過(guò)作軸,過(guò)作軸,設(shè),則,得出,得出,得出,.【詳解】解(1),,;(2)①當(dāng)秒時(shí),小正方形向右移動(dòng)1.5厘米,(平方厘米);②如圖1所示,小正方形的一條對(duì)角線(xiàn)掃過(guò)的面積為紅色平行四邊形,面積為:(平方厘米);③如圖2,小正方形平移距離為(厘米),小正方形平移的距離為1厘米或5厘米,或,綜上所述,小正方形平移的時(shí)間為1或5秒;(3)如圖3,過(guò)作軸,過(guò)作軸,平分,設(shè),則,,,,平分,,.【點(diǎn)睛】本題考查了非負(fù)數(shù)的性質(zhì)、坐標(biāo)與圖形的性質(zhì)、平移的性質(zhì)、平行線(xiàn)的性質(zhì)、角平分線(xiàn)的性質(zhì)、解題的關(guān)鍵是熟練掌握平行線(xiàn)的性質(zhì)及平移的性質(zhì).14.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線(xiàn),之間有一動(dòng)點(diǎn),因此需要對(duì)點(diǎn)的位置進(jìn)行分類(lèi)討論:如圖1,當(dāng)點(diǎn)在的左側(cè)時(shí),,,滿(mǎn)足數(shù)量關(guān)系為:;(2)當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿(mǎn)足數(shù)量關(guān)系為:;(3)①若當(dāng)點(diǎn)在的左側(cè)時(shí),;當(dāng)點(diǎn)在的右側(cè)時(shí),可求得;②結(jié)合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過(guò)點(diǎn)作,,,,,,;(2)如圖2,當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿(mǎn)足數(shù)量關(guān)系為:;過(guò)點(diǎn)作,,,,,,;(3)①如圖3,若當(dāng)點(diǎn)在的左側(cè)時(shí),,,,分別平分和,,,;如圖4,當(dāng)點(diǎn)在的右側(cè)時(shí),,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數(shù)量關(guān)系為:或.【點(diǎn)睛】本題主要考查了平行線(xiàn)的性質(zhì),平行公理和及推論等知識(shí)點(diǎn),作輔助線(xiàn)后能求出各個(gè)角的度數(shù),是解此題的關(guān)鍵.15.(1)(3,4);(2)①t=時(shí),AP所在直線(xiàn)垂直于x軸;②當(dāng)t為或時(shí),S=S△APE.【分析】(1)根據(jù)直角坐標(biāo)系得出點(diǎn)F的坐標(biāo)即可;(2)①根據(jù)AP所在直線(xiàn)垂直于x軸,得出關(guān)于t的方程,解答即可;②分和兩種情況,利用面積公式列出方程即可求解.【詳解】(1)由直角坐標(biāo)系可得:F坐標(biāo)為:(3,4);故答案為:(3,4);(2)①要使AP所在直線(xiàn)垂直于x軸.如圖1,只需要Px=Ax,則t+3=3t,解得:,所以即時(shí),AP所在直線(xiàn)垂直于x軸;②由題意知,OH=7,所以當(dāng)時(shí),點(diǎn)D與點(diǎn)H重合,所以要分以下兩種情況討論:情況一:當(dāng)時(shí),GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情況二:當(dāng)時(shí),如圖2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,綜上所述,當(dāng)t為或時(shí),S=S△APE.【點(diǎn)睛】本題考查了平面直角坐標(biāo)系中點(diǎn)的移動(dòng),一元一次方程的應(yīng)用等問(wèn)題,理解題意,分類(lèi)討論是解題關(guān)鍵.16.(1);(2)①;②;(3).【分析】(1)根據(jù)定義判斷即可;(2)①設(shè)直線(xiàn)上與點(diǎn)的“距點(diǎn)”的點(diǎn)的坐標(biāo)為(a,3),根據(jù)定義列出關(guān)于a的方程,解方程即可;②點(diǎn)坐標(biāo)為,直線(xiàn)上點(diǎn)的縱坐標(biāo)為b,由題意得,轉(zhuǎn)化為不等式組,解不等式組即可.(3)分類(lèi)討論,分別取P與點(diǎn)M重合、P與點(diǎn)N重合討論。當(dāng)點(diǎn)P與點(diǎn)M重合時(shí),設(shè)⊙C左側(cè)與x軸交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是(m-,0),根據(jù)定義列出關(guān)于m的絕對(duì)值方程,解方程,取較小的值;當(dāng)點(diǎn)P與點(diǎn)N重合時(shí),設(shè)⊙C右側(cè)與x軸交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是(m+,0),根據(jù)定義列出關(guān)于m的絕對(duì)值方程,解方程,取較大的值,問(wèn)題得解.【詳解】解:(1)∵,O(0,0),∴,∴點(diǎn)D與原點(diǎn)互為“距點(diǎn)”;∵,O(0,0),∴,所以點(diǎn)D與原點(diǎn)互為“距點(diǎn)”;∵,O(0,0),∴,所以點(diǎn)D與原點(diǎn)互為“距點(diǎn)”;故答案為:;(2)①設(shè)直線(xiàn)上與點(diǎn)的“距點(diǎn)”的點(diǎn)的坐標(biāo)為(a,3),則,解得a=2故答案為(2,3);②如圖,點(diǎn)坐標(biāo)為,直線(xiàn)上點(diǎn)的縱坐標(biāo)為b,設(shè)直線(xiàn)上點(diǎn)的坐標(biāo)為(c,b)則:,∴,∴,∴,即的取值范圍是;(3)如圖(1),當(dāng)點(diǎn)P與點(diǎn)M重合時(shí),設(shè)⊙C左側(cè)與x軸交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是(m-,0),∵點(diǎn)P與點(diǎn)Q互為“5-距點(diǎn)",P(1,2),∴,解得:,;∵,∴?。?dāng)點(diǎn)P與點(diǎn)N重合時(shí),設(shè)⊙C右側(cè)與x軸交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是(m+,0),∵點(diǎn)P與點(diǎn)Q互為“5-距點(diǎn)",則P(3,2),∴,解得:,,∵∴取∴.【點(diǎn)睛】本題為新定義題型,關(guān)鍵要讀懂題目中給出的新概念,建立模型,并結(jié)合所學(xué)知識(shí)解決即可.17.(1),;(2)或;(3)或【分析】(1)根據(jù)一個(gè)數(shù)的平方與絕對(duì)值均非負(fù),且其和為0,則可得它們都為0,從而可求得a和b的值;(2)過(guò)點(diǎn)P作直線(xiàn)l垂直于x軸,延長(zhǎng)交直線(xiàn)于點(diǎn),設(shè)點(diǎn)坐標(biāo)為,過(guò)作交直線(xiàn)于點(diǎn),根據(jù)面積關(guān)系求出Q點(diǎn)坐標(biāo),再求出PQ的長(zhǎng)度,即可求出n的值;(3)先根據(jù)求出C點(diǎn)坐標(biāo),再根據(jù)求出D點(diǎn)坐標(biāo),根據(jù)題意可得F點(diǎn)坐標(biāo),由得關(guān)于t的方程,求出t值即可.【詳解】(1),,且,,(2)過(guò)作直線(xiàn)垂直于軸,延長(zhǎng)交直線(xiàn)于點(diǎn),設(shè)點(diǎn)坐標(biāo)為,過(guò)作交直線(xiàn)于點(diǎn),如圖所示∵∴解得,點(diǎn)坐標(biāo)為∵∴解得:或(3)當(dāng)或時(shí),有.如圖,延長(zhǎng)BA交x軸于點(diǎn)D,過(guò)A點(diǎn)作AG⊥x軸于點(diǎn)G,過(guò)B點(diǎn)作BN⊥x軸于點(diǎn)N,∵∴解得:∴∵∴解得:∵∴當(dāng)運(yùn)動(dòng)t秒時(shí),∴∵CE=t∴,∵∴解得:或.【點(diǎn)睛】本題主要考查三角形的面積,含絕對(duì)值方程解法,熟練掌握直角坐標(biāo)系的知識(shí),三角形的面積,梯形的面積等知識(shí)是解題的關(guān)鍵,難點(diǎn)在于對(duì)圖形進(jìn)行割補(bǔ)轉(zhuǎn)化為易求面積的圖形.18.(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)過(guò)點(diǎn)作直線(xiàn)軸,延長(zhǎng)交于,設(shè)出點(diǎn)坐標(biāo),根據(jù)面積關(guān)系求出點(diǎn)坐標(biāo),再求出的長(zhǎng)度,即可求出值;(3)先根據(jù)求出點(diǎn)坐標(biāo),再根據(jù)面積關(guān)系求出值即可.【詳解】解:(1),,,,,故答案為,2;(2)如圖1,過(guò)作直線(xiàn)垂直于軸,延長(zhǎng)交直線(xiàn)于點(diǎn),設(shè)的坐標(biāo)為,過(guò)作交直線(xiàn)于點(diǎn),連接,,,,解得,,,又點(diǎn)滿(mǎn)足的面積等于6,,解得或;(3)如圖2,延長(zhǎng)交軸于,過(guò)作軸于,過(guò)作軸于,,,解得,,,,解得,,,,由題知,當(dāng)秒時(shí),,,,,,,,解得或2.【點(diǎn)睛】本題是三角形綜合題,考查三角形的面積,熟練掌握直角坐標(biāo)系的知識(shí),三角形的面積,梯形面積等知識(shí)是解題的關(guān)鍵.19.(1)長(zhǎng)為,寬為;(2)正確,理由見(jiàn)解析【分析】(1)設(shè)長(zhǎng)為3x,寬為2x,根據(jù)長(zhǎng)方形的面積為30列方程,解方程即可;(2)根據(jù)長(zhǎng)方形紙片的周長(zhǎng)為50,陰影部分兩個(gè)長(zhǎng)方形的周長(zhǎng)之和為30列方程組,解方程組求出a即可得到大正方形的面積.【詳解】解:(1)設(shè)長(zhǎng)為3x,寬為2x,則:3x?2x=30,∴x=(負(fù)值舍去),∴3x=,2x=,答:這個(gè)長(zhǎng)方形紙片的長(zhǎng)為,寬為;(2)正確.理由如下:根據(jù)題意得:,解得:,∴大正方形的面積為102=100.【點(diǎn)睛】本題考查了算術(shù)平方根,二元一次方程組,解二元一次方程組的基本思路是消元,把二元方程轉(zhuǎn)化為一元方程是解題的關(guān)鍵.20.(1)60,40;(2)①甲:85;乙50;②27【分析】(1)由圖示列出關(guān)于a、b的二元一次方程組求解.(2)①根據(jù)已知和圖示計(jì)算出兩種裁法共產(chǎn)生甲型板材和乙型板材的張數(shù);②根據(jù)豎式與橫式禮品盒所需要的甲、乙兩種型號(hào)板材的張數(shù)列出關(guān)于m、n的二元一次方程,求解,即可得出結(jié)論.【詳解】解:(1)依題意,得:解得:a=60b=40答:a、b的值分別為60,40.(2)①一共可裁剪出甲型板材40×2+5=85(張)乙型板材40+5×2=50(張).故答案是:85,50;②設(shè)可做成m個(gè)豎式無(wú)蓋裝飾盒,n個(gè)橫式無(wú)蓋裝飾盒.依題意得:,解得:m=4,n=23所以m+n=27,故答案為27個(gè)【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是二元一次方程組的應(yīng)用,關(guān)鍵是根據(jù)已知先列出二元一次方程組求出a、b的值,根據(jù)圖示列出算式以及關(guān)于m、n的二元一次方程.21.(1)2(a+b);(2)(2+);(2+);(3)36.【分析】(1)根據(jù)兩地間的距離=兩人的速度之和×第一次相遇所需時(shí)間,即可得出結(jié)論;(2)利用時(shí)間=路程÷速度結(jié)合2小時(shí)后第一次相遇,即可得出結(jié)論;(3)設(shè)AB兩地的距離為S千米,根據(jù)路程=速度×?xí)r間,即可得出關(guān)于(a+b),S的二元一次方程組(此處將a+b當(dāng)成一個(gè)整體),解之即可得出結(jié)論.【詳解】(1)A、B兩地的距離可以表示為2(a+b)千米.故答案為:2(a+b).(2)甲乙相遇時(shí),甲已經(jīng)走了千米,乙已經(jīng)走了千米,根據(jù)相遇后他們的速度都提高了1千米/小時(shí),得甲還需小時(shí)到達(dá)B地,乙還需小時(shí)到達(dá)A地,所以甲從A到B所用的時(shí)間為(2+)小時(shí),乙從B到A所用的時(shí)間為(2+)小時(shí).故答案為:(2+);(2+).(3)設(shè)AB兩地的距離為S千米,3小時(shí)36分鐘=小時(shí).依題意,得:,令x=a+b,則原方程變形為,解得:.答:AB兩地的距離為36千米.【點(diǎn)睛】本題考查了列代數(shù)式以及二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.22.(1);(2);(3)與之間的數(shù)量關(guān)系為.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)和解二元一次方程組求解即可;(2)設(shè),先根據(jù)平移的性質(zhì)可得,過(guò)D作軸于P,再根據(jù)三角形ADP的面積得出,從而可得,然后根據(jù)線(xiàn)段的和差可得,由此即可得出答案;(3)設(shè)AH與CD交于點(diǎn)Q,過(guò)H,G分別作DF的平行線(xiàn)MN,KJ,設(shè),由平行線(xiàn)的性質(zhì)可得,由此即可得出結(jié)論.【詳解】(1)∵,且∴解得:則;(2)設(shè)∵將線(xiàn)段AB平移得到CD,∴由平移的性質(zhì)得如圖1,過(guò)D作軸于P∴∵∴即解得∴∴;(3)與之間的數(shù)量關(guān)系為,求解過(guò)程如下:如圖2,設(shè)AH與CD交于點(diǎn)Q,過(guò)H,G分別作DF的平行線(xiàn)MN,KJ∵HD平分,HF平分∴設(shè)∵AB平移得到CD∴∴,∴∵∴∴∵∴∴∴.【點(diǎn)睛】本題屬于一道較難的綜合題,考查了解二元一次方程組、平移的性質(zhì)、平行線(xiàn)的性質(zhì)等知識(shí)點(diǎn),較難的是題(3),通過(guò)作兩條輔助線(xiàn),構(gòu)造平行線(xiàn),從而利用平行線(xiàn)的性質(zhì)是解題關(guān)鍵.23.(1)?3,4,4;(2)(0,)或(0,);(3)n<?5或n>?1【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)構(gòu)建方程組,求出a和b,再根據(jù)BC∥x軸,可得c的值;(2)當(dāng)點(diǎn)D在直線(xiàn)AB的下方時(shí),如圖1?1中,延長(zhǎng)BC交y軸于E(0,4),連接AE.設(shè)D(0,m).當(dāng)點(diǎn)D在直線(xiàn)AB的上方時(shí),如圖1?2中,連接OB,設(shè)D(0,m).分別構(gòu)建方程,可得結(jié)論.(3)如圖2中,當(dāng)點(diǎn)N在點(diǎn)A的右側(cè)時(shí),連接MN,OB,設(shè)M(a,b),利用面積法求出b的值,再求出S△BNM=S△BCM時(shí),n的值,同法求出當(dāng)點(diǎn)N在點(diǎn)的左側(cè)時(shí),且S△BNM=S△BCM時(shí),n的值,結(jié)合圖象可得結(jié)論.【詳解】解:(1)∵,又∵≥0,|2a?b+10|≥0,∴a+b?1=0且2a?b+10=0,∴a=?3,b=4,∵BC∥x軸,∴c=4,∴a=?3,b=4,c=4,故答案為:?3,4,4;(2)當(dāng)點(diǎn)D在直線(xiàn)AB的下方時(shí),如圖1?1中,延長(zhǎng)BC交y軸于E(0,4),連接AE.設(shè)D(0,m).∵S△ABD=S△AED+S△BDE?S△ABE=S△ABC,∴×(4?m)×3+×(4?m)×4?×4×4=×2×4,∴m=;當(dāng)點(diǎn)D在直線(xiàn)AB的上方時(shí),如圖1?2中,連接OB,設(shè)D(0,m).∵S△ABD=S△ADO+S△ODB?S△ABO=S△ABC,∴×m×3+×m×4?×3×4=×2×4,∴m=.綜上所述,滿(mǎn)足條件的點(diǎn)D的坐標(biāo)為(0,)或(0,).(3)如圖2中,當(dāng)點(diǎn)N點(diǎn)A的右側(cè)時(shí),連接MN,OB.設(shè)M(a,b),∵S△BCM=S△OBC?(S△AOB?S△AOM),∴×2×(4?b)=×2×4?(×3×4?12×3×b),解得b=,當(dāng)S△BNM=S△BCM時(shí),則有×(n+3)×4?×(n+3)×=×2×(4?),解得n=?1,當(dāng)點(diǎn)N在點(diǎn)A的左側(cè)時(shí),且S△BNM=S△BCM時(shí),同法可得n=?5,觀察圖象可知,滿(mǎn)足條件的n的值為n<?5或n>?1.【點(diǎn)睛】本題屬于三角形綜合題,考查了三角形的面積,非負(fù)數(shù)的性質(zhì),平行線(xiàn)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類(lèi)討論的思想思考問(wèn)題,學(xué)會(huì)利用未知數(shù)構(gòu)建方程解決問(wèn)題,對(duì)于初一學(xué)生來(lái)說(shuō)題目有一定的難度.24.(1)有3種租車(chē)方案;(2)租5輛大客車(chē),2輛小客車(chē)最省錢(qián);(3)租用大客車(chē)2輛,小客車(chē)7輛;或租10輛小客車(chē).【分析】(1)設(shè)租大客車(chē)x輛,根據(jù)題意可列出關(guān)于x的不等式,求得不等式的解集后,再根據(jù)x為整數(shù)即可確定租車(chē)方案;(2)依次計(jì)算(1)題中的租車(chē)方案,比較結(jié)果即可得出答案;(3)設(shè)租大客車(chē)x輛,小客車(chē)y輛,根據(jù)客車(chē)的座位數(shù)滿(mǎn)足的條件可確定x、y滿(mǎn)足的不等式組,進(jìn)一步可確定x、y滿(mǎn)足的方程,再由帶隊(duì)的老師數(shù)可確定x、y滿(mǎn)足的不等式,二者結(jié)合即可確定租車(chē)方案.【詳解】解:(1)由題意知:本次乘車(chē)共270+7=277(人).設(shè)租大客車(chē)x輛,則小客車(chē)(7-x)輛,根據(jù)題意,得,解得:,因?yàn)閤為整數(shù),且x≤7,所以x=5,6,7,即有3種租車(chē)方案.(2)方案一:當(dāng)x=7,所租7輛皆為大客車(chē)時(shí),租車(chē)費(fèi)用為:7×400=2800(元),方案二:當(dāng)x=6,所租6輛為大客車(chē),1輛為小客車(chē)時(shí),租車(chē)費(fèi)用為:6×400+300=2700(元),方案三:當(dāng)x=5,所租5輛為大客車(chē),2輛為小客車(chē)時(shí),租車(chē)費(fèi)用為:5×400+300×2=2600(元),所以,租5輛大客車(chē),2輛小客車(chē)最省錢(qián).(3)乘車(chē)總?cè)藬?shù)為270+7+10+4=291(人),因?yàn)樽詈笠惠v小客車(chē)最少20人,則客車(chē)空位不能大于10個(gè),所以客車(chē)的總座位數(shù)應(yīng)滿(mǎn)足:291≤座位數(shù)≤301.設(shè)租大客車(chē)x輛,小客車(chē)y輛,則291≤45x+30y≤301,即,∵x、y均為整數(shù),∴3x+2y=20,即.∵每輛大客車(chē)有2名教師帶隊(duì),每輛小客車(chē)至少有名教師帶隊(duì),∴2x+y≤11.把代入上式,得,解得.又∵x為整數(shù)且是2的倍數(shù),∴x=2,y=7或x=0,y=10.故租車(chē)方案為:租大客車(chē)2輛,小客車(chē)7輛;或租10輛小客車(chē).【點(diǎn)睛】本題考查了不等式和不等式組的實(shí)際應(yīng)用、二元一次方程的整數(shù)解等知識(shí),正確理解題意,列出不等式和不等式組是解題的關(guān)鍵.25.(1)-1;(2)t=-2,-1,0,1;(3)13組【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2)參考小明的解題方法求解即可;(3)參考小明的解題方法求解后,即可得到結(jié)論.【詳解】解:(1)把x=2代入方程3x-5y=11得,6-6y=11,解得y=-1,∵方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則θ=-1,故答案為-1;(2)方程2x+3y=24一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)椋獾?3<t<2.因?yàn)閠為整數(shù),所以t=-2,-1,0,1.(3)方程19x+8y=1908一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).∵,解得<t<12.5.因?yàn)閠為整數(shù),所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整數(shù)解有13組.【點(diǎn)睛】本題考查了二元一次方程的解,一元一次不等式的整數(shù)解,理解題意、掌握解題方法是本題的關(guān)鍵.26.(1)①⑥;(2),,;(3)有四種不同的截法不浪費(fèi)材料,分別為2長(zhǎng)的鋼絲12根,3長(zhǎng)的鋼絲2根;或2長(zhǎng)的鋼絲9根,3長(zhǎng)的鋼絲4根;或2長(zhǎng)的鋼絲6根,3長(zhǎng)的鋼絲6根;或2長(zhǎng)的鋼絲3根,3長(zhǎng)的鋼絲8根【分析】(1)依據(jù)題中給出的判斷方法進(jìn)行判斷,先找出最大公約數(shù),然后再看能否整除c,從而來(lái)判斷是否有整數(shù)解;(2)依據(jù)材料2的解題過(guò)程,即可求得結(jié)果;(3)根據(jù)題意,設(shè)2長(zhǎng)的鋼絲為根,3長(zhǎng)的鋼絲為根(為正整數(shù)).則可得關(guān)于x,y的二元一次方程,利用材料2的求解方法,求得此方程的整數(shù)解,即可得出結(jié)論.【詳解】解:(1)①,因?yàn)?,9的最大公約數(shù)是3,而11不是3的整倍數(shù),所以此方程沒(méi)有整數(shù)解;②,因?yàn)?5,5的最大公約數(shù)是5,而70是5的整倍數(shù),所以此方程有整數(shù)解;③,因?yàn)?,3的最大公約數(shù)是3,而111是3的整倍數(shù),所以此方程有整數(shù)解;④,因?yàn)?7,9的最大公約數(shù)是9,而99是9的整倍數(shù),所以此方程有整數(shù)解;⑤,因?yàn)?1,26的最大公約數(shù)是13,而169是13的整倍數(shù),所以此方程有整數(shù)解;⑥,因?yàn)?2,121的最大公約數(shù)是11,而324不是11的整倍數(shù),所以此方程沒(méi)有整數(shù)解;故答案為:①⑥.(2)由已知得:.①設(shè)(為整數(shù)),則.②把②代入①得:.所以方程組的解為.根據(jù)題意得:,解不等式組得:<<.所以的整數(shù)解是-2,-1,0.故原方程所有的正整數(shù)解為:,,.(3)設(shè)2長(zhǎng)的鋼絲為根,3長(zhǎng)的鋼絲為根(為正整數(shù)).根據(jù)題意得:.所以.設(shè)(為整數(shù)),則.∴.根據(jù)題意得:,解不等式組得:.所以的整數(shù)解是1,2,3,4.故所有的正整數(shù)解為:,,,.答:有四種不同的截法不浪費(fèi)材料,分別為2長(zhǎng)的鋼絲12根,3長(zhǎng)的鋼絲2根;或2長(zhǎng)的鋼絲9根,3長(zhǎng)的鋼絲4根;或2長(zhǎng)的鋼絲6根,3長(zhǎng)的鋼絲6根;或2長(zhǎng)的鋼絲3根,3長(zhǎng)的鋼絲8根.【點(diǎn)睛】此題主要考查了求二元一次方程的整數(shù)解,理解題意,并掌握利用一元一次不等式組求二元一次方程的整數(shù)解的方法及是解題的關(guān)鍵.27.(1)加工廠購(gòu)進(jìn)A種原料25噸,B種原料15噸;(2)當(dāng)m﹣n<0,即a<b時(shí),方案一運(yùn)輸總花費(fèi)少,當(dāng)m﹣n=0,即a=b時(shí),兩種運(yùn)輸總花費(fèi)相等,當(dāng)m﹣n>0,即a>b時(shí),方案二運(yùn)輸總花費(fèi)少,見(jiàn)解析【分析】(1)設(shè)加工廠購(gòu)進(jìn)種原料噸,種原料噸,由題意:某加工廠用52500元購(gòu)進(jìn)、兩種原料共40噸,其中原料每噸1500元,原料每噸1000元.列

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論