![四川省瀘縣二中2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁(yè)](http://file4.renrendoc.com/view/ec2b63d9b11641bdfab319064d038fcc/ec2b63d9b11641bdfab319064d038fcc1.gif)
![四川省瀘縣二中2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁(yè)](http://file4.renrendoc.com/view/ec2b63d9b11641bdfab319064d038fcc/ec2b63d9b11641bdfab319064d038fcc2.gif)
![四川省瀘縣二中2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁(yè)](http://file4.renrendoc.com/view/ec2b63d9b11641bdfab319064d038fcc/ec2b63d9b11641bdfab319064d038fcc3.gif)
![四川省瀘縣二中2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁(yè)](http://file4.renrendoc.com/view/ec2b63d9b11641bdfab319064d038fcc/ec2b63d9b11641bdfab319064d038fcc4.gif)
![四川省瀘縣二中2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁(yè)](http://file4.renrendoc.com/view/ec2b63d9b11641bdfab319064d038fcc/ec2b63d9b11641bdfab319064d038fcc5.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省瀘縣二中2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《米老鼠和唐老鴨》這部動(dòng)畫給我們的童年帶來(lái)了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個(gè)圓構(gòu)成米奇的簡(jiǎn)筆畫形象.已知3個(gè)圓方程分別為:圓圓,圓若過原點(diǎn)的直線與圓、均相切,則截圓所得的弦長(zhǎng)為()A. B.C. D.2.如圖,在四面體中,,,,分別為,,,的中點(diǎn),則化簡(jiǎn)的結(jié)果為()A. B.C. D.3.已知,,則()A. B.C. D.4.已知,是球的球面上兩點(diǎn),,為該球面上的動(dòng)點(diǎn),若三棱錐體積的最大值為36,則球的表面積為()A. B.C. D.5.已知點(diǎn),動(dòng)點(diǎn)P滿足,則點(diǎn)P的軌跡為()A橢圓 B.雙曲線C.拋物線 D.圓6.已知球O的半徑為2,球心到平面的距離為1,則球O被平面截得的截面面積為()A. B.C. D.7.拋物線的準(zhǔn)線方程為()A. B.C. D.8.如圖甲是第七屆國(guó)際數(shù)學(xué)家大會(huì)(簡(jiǎn)稱ICME—7)的會(huì)徽?qǐng)D案,其主體圖案是由圖乙的一連串直角三角形演化而成的.已知,,,,為直角頂點(diǎn),設(shè)這些直角三角形的周長(zhǎng)從小到大組成的數(shù)列為,令,為數(shù)列的前項(xiàng)和,則()A.8 B.9C.10 D.119.如圖所示,正方體的棱長(zhǎng)為2,以其所有面的中心為頂點(diǎn)的多面體的表面積為()A. B.C.8 D.1210.下列命題中,結(jié)論為真命題的組合是()①“”是“直線與直線相互垂直”的充分而不必要條件②若命題“”為假命題,則命題一定是假命題③是的必要不充分條件④雙曲線被點(diǎn)平分的弦所在的直線方程為⑤已知過點(diǎn)的直線與圓的交點(diǎn)個(gè)數(shù)有2個(gè).A.①③④ B.②③④C.①③⑤ D.①②⑤11.設(shè)雙曲線C:的左、右焦點(diǎn)分別為,點(diǎn)P在雙曲線C上,若線段的中點(diǎn)在y軸上,且為等腰三角形,則雙曲線C的離心率為()A. B.2C. D.12.下面四個(gè)條件中,使成立的充分而不必要的條件是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)與是定義在同一區(qū)間上的兩個(gè)函數(shù),若函數(shù)在上有兩個(gè)不同的零點(diǎn),則稱與在上是“關(guān)聯(lián)函數(shù)”.若與在上是“關(guān)聯(lián)函數(shù)”,則實(shí)數(shù)的取值范圍是____________.14.圓關(guān)于直線對(duì)稱的圓的方程為______15.如圖,在等腰直角中,,為半圓弧上異于,的動(dòng)點(diǎn),當(dāng)半圓弧繞旋轉(zhuǎn)的過程中,有下列判斷:①存在點(diǎn),使得;②存在點(diǎn),使得;③四面體的體積既有最大值又有最小值:④若二面角為直二面角,則直線與平面所成角的最大值為45°.其中正確的是______(請(qǐng)?zhí)钌纤心阏J(rèn)為正確的結(jié)果的序號(hào)).16.如圖,在直棱柱中,,則異面直線與所成角的余弦值為___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)已知三角形的三個(gè)頂點(diǎn)是,,(1)求邊上的中線所在直線的方程;(2)求邊上的高所在直線的方程18.(12分)如圖,在四棱錐中,平面,底面是直角梯形,,,,,為側(cè)棱包含端點(diǎn)上的動(dòng)點(diǎn).(1)當(dāng)時(shí),求證平面;(2)當(dāng)直線與平面所成角的正弦值為時(shí),求二面角的余弦值.19.(12分)已知等差數(shù)列前n項(xiàng)和為,,,若對(duì)任意的正整數(shù)n成立,求實(shí)數(shù)的取值范圍.20.(12分)已知直線,圓.(1)證明:直線l與圓C相交;(2)設(shè)l與C的兩個(gè)交點(diǎn)分別為A、B,弦AB的中點(diǎn)為M,求點(diǎn)M的軌跡方程;(3)在(2)的條件下,設(shè)圓C在點(diǎn)A處的切線為,在點(diǎn)B處的切線為,與的交點(diǎn)為Q.試探究:當(dāng)m變化時(shí),點(diǎn)Q是否恒在一條定直線上?若是,請(qǐng)求出這條直線的方程;若不是,說(shuō)明理由.21.(12分)已知圓的方程為(1)求圓的圓心及半徑;(2)是否存在直線滿足:經(jīng)過點(diǎn),且_________________?如果存在,求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由從下列三個(gè)條件中任選一個(gè)補(bǔ)充在上面問題中并作答:條件①:被圓所截得的弦長(zhǎng)最長(zhǎng);條件②:被圓所截得的弦長(zhǎng)最短;條件③:被圓所截得的弦長(zhǎng)為注:如果選擇多個(gè)條件分別作答,按第一個(gè)解答計(jì)分22.(10分)已知函數(shù)(Ⅰ)若的圖象在點(diǎn)處的切線與軸負(fù)半軸有公共點(diǎn),求的取值范圍;(Ⅱ)當(dāng)時(shí),求的最值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長(zhǎng)公式求弦長(zhǎng)【詳解】設(shè)過點(diǎn)的直線.由直線與圓、圓均相切,得解得(1).設(shè)點(diǎn)到直線的距離為則(2).又圓的半徑直線截圓所得弦長(zhǎng)結(jié)合(1)(2)兩式,解得2、C【解析】根據(jù)向量的加法和數(shù)乘的幾何意義,即可得到答案;【詳解】故選:C3、C【解析】利用空間向量的坐標(biāo)運(yùn)算即可求解.【詳解】因?yàn)?,,所以,故選:C.4、C【解析】當(dāng)平面時(shí),三棱錐體積最大,根據(jù)棱長(zhǎng)與球半徑關(guān)系即可求出球半徑,從而求出表面積.【詳解】當(dāng)平面時(shí),三棱錐體積最大.又,則三棱錐體積,解得;故表面積.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查三棱錐與球的組合體的綜合問題,本題的關(guān)鍵是判斷當(dāng)平面時(shí),三棱錐體積最大.5、A【解析】根據(jù)橢圓的定義即可求解.【詳解】解:,故,又,根據(jù)橢圓的定義可知:P的軌跡為橢圓.故選:A.6、B【解析】根據(jù)球的性質(zhì)可求出截面圓的半徑即可求解.【詳解】由球的性質(zhì)可知,截面圓的半徑為,所以截面的面積.故選:B7、A【解析】將拋物線的方程化成標(biāo)準(zhǔn)形式,即可得到答案;【詳解】拋物線的方程化成標(biāo)準(zhǔn)形式,準(zhǔn)線方程為,故選:A.8、B【解析】由題意可得的邊長(zhǎng),進(jìn)而可得周長(zhǎng)及,進(jìn)而可得,可得解.【詳解】由,可得,,,,所以,,所以前項(xiàng)和,所以,故選:B.9、B【解析】首先確定幾何體的空間結(jié)構(gòu)特征,然后求解其表面積即可.【詳解】由題意知,該幾何體是一個(gè)由8個(gè)全等的正三角形圍成的多面體,正三角形的邊長(zhǎng)為:,正三角形邊上的一條高為:,所以一個(gè)正三角形的面積為:,所以多面體的表面積為:.故選:B10、C【解析】求出兩直線垂直時(shí)m值判斷①;由復(fù)合命題真值表可判斷②;化簡(jiǎn)不等式結(jié)合充分條件、必要條件定義判斷③;聯(lián)立直線與雙曲線的方程組成的方程組驗(yàn)證判斷④;判定點(diǎn)與圓的位置關(guān)系判斷⑤作答.【詳解】若直線與直線相互垂直,則,解得或,則“”是“直線與直線相互垂直”的充分而不必要條件,①正確;命題“”為假命題,則與至少一個(gè)是假命題,不能推出一定是假命題,②不正確;,,則是的必要不充分條件,③正確;由消去y并整理得:,,即直線與雙曲線沒有公共點(diǎn),④不正確;點(diǎn)在圓上,則直線與圓至少有一個(gè)公共點(diǎn),而過點(diǎn)與圓相切的直線為,直線不包含,因此,直線與圓相交,有兩個(gè)交點(diǎn),⑤正確,所以所有真命題的序號(hào)是①③⑤.故選:C11、A【解析】根據(jù)是等腰直角三角形,再表示出的長(zhǎng),利用三角形的幾何性質(zhì)即可求得答案.【詳解】線段的中點(diǎn)在y軸上,設(shè)的中點(diǎn)為M,因?yàn)镺為的中點(diǎn),所以,而,則,為等腰三角形,故,由,得,又為等腰直角三角形,故,即,解得,即,故選:A.12、A【解析】由,但無(wú)法得出,A滿足;由、均無(wú)法得出,不滿足“充分”;由,不滿足“不必要”.考點(diǎn):不等式性質(zhì)、充分必要性.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】令得,設(shè)函數(shù),則直線與函數(shù)在區(qū)間上的圖象有兩個(gè)交點(diǎn),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,利用數(shù)形結(jié)合思想可求得實(shí)數(shù)的取值范圍.【詳解】令得,設(shè)函數(shù),則直線與函數(shù)在區(qū)間上的圖象有兩個(gè)交點(diǎn),,令,可得,列表如下:極小值,,如圖所示:由圖可知,當(dāng)時(shí),直線與函數(shù)在區(qū)間上的圖象有兩個(gè)交點(diǎn),因此,實(shí)數(shù)的取值范圍是.故答案為:.14、【解析】求出圓心關(guān)于直線對(duì)稱點(diǎn),從而求出對(duì)稱圓的方程.【詳解】圓心為,半徑為1,設(shè)關(guān)于對(duì)稱點(diǎn)為,則,解得:,故對(duì)稱點(diǎn)為,故圓關(guān)于直線對(duì)稱的圓的方程為.故答案為:15、①②④【解析】①當(dāng)D為中點(diǎn),且A,B,C,D四點(diǎn)共面時(shí),可證得四邊形ABCD為正方形即可判斷①;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點(diǎn))時(shí),可知平面ABC,可證得平面CDB,即可判斷②;③,研究臨界值即可判斷③;④二面角D-AC-B為直二面角,且D為中點(diǎn)時(shí),直線DB與平面ABC所成角的最大,作圖分析驗(yàn)證可判斷④.【詳解】①當(dāng)D為中點(diǎn),且A,B,C,D四點(diǎn)共面時(shí),連結(jié)BD,交AC于,則為AC中點(diǎn),此時(shí),且,所以四邊形ABCD為正方形,所以AB//CD,故①正確;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點(diǎn))時(shí),此時(shí)有:平面ABC,,又因?yàn)?,所以平面CDB,所以,故②正確;③,當(dāng)平面平面ABC,且D為中點(diǎn)時(shí),h有最大值;當(dāng)A,B,C,D四點(diǎn)共面時(shí)h有最小值0,此時(shí)為平面圖形,不是立體圖形,故四面體D-ABC無(wú)最小值,故③錯(cuò)誤.④二面角D-AC-B為直二面角,且D為中點(diǎn)時(shí),直線DB與平面ABC所成角的最大,取AC中點(diǎn)O,連結(jié)DO,BO,則,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以為直線DB與平面ABC所成角,設(shè),則,,所以為等腰直角三角形,所以,直線與平面所成角的最大值為45°,故④正確.故答案為:①②④.16、【解析】建立空間直角坐標(biāo)系后求相關(guān)的向量后再用夾角公式運(yùn)算即可.【詳解】如圖,以C為坐標(biāo)原點(diǎn),所在直線為x,y,z軸,建立空間直角坐標(biāo)系,則,所以,所以,故異面直線與所成角的余弦值為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1);(2)【解析】(1)先求出BC的中點(diǎn)坐標(biāo),再利用兩點(diǎn)式求出直線的方程;(2)先求出BC邊上的高所在直線的斜率,再利用點(diǎn)斜式求出直線的方程.【詳解】(1)設(shè)線段的中點(diǎn)為因?yàn)?,,所以的中點(diǎn),所以邊上的中線所在直線的方程為,即(2)因?yàn)椋?,所以邊所在直線的斜率,所以邊上的高所在直線的斜率為,所以邊上的高所在直線的方程為,即【點(diǎn)睛】本題主要考查直線方程的求法,屬于基礎(chǔ)題.18、(1)證明見解析;(2).【解析】(1)連接交于,連接,證得,從而證得平面;(2)過作于,以為原點(diǎn),建立空間直角坐標(biāo)系,設(shè),求面的法向量,由直線與平面所成角的正弦值為,求得的值,再用向量法求出二面角的余弦值.【詳解】解:(1)連接交于,連接,由題意,∵,∴,∴,又面,面,∴面.(2)過作于,則在中,,,,以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.設(shè),則,,,,,,,,設(shè)向量為平面的一個(gè)法向量,則由,有,令,得;記直線與平面所成的角為,則,解得,此時(shí);設(shè)向量為平面的一個(gè)法向量則由,有,令,得;∴二面角的余弦值為.【點(diǎn)睛】本題考查了線面平行的判定與證明,用向量法求線面角,二面角,還考查了學(xué)生的分析能力,空間想象能力,運(yùn)算能力,屬于中檔題.19、【解析】設(shè)等差數(shù)列的公差為,根據(jù)題意得,解方程得,,進(jìn)而得,故恒成立,再結(jié)合二次函數(shù)的性質(zhì)得當(dāng)或4時(shí),取得最小值,進(jìn)而得答案.【詳解】解:設(shè)等差數(shù)列的公差為,由已知,.聯(lián)立方程組,解得,.所以,,由題意,即.令,其圖象為開口向上的拋物線,對(duì)稱軸為,所以當(dāng)或4時(shí),取得最小值,所以實(shí)數(shù)的取值范圍是.20、(1)證明見解析;(2);(3)點(diǎn)Q恒在直線上,理由見解析.【解析】(1)求出直線過定點(diǎn),得到在圓內(nèi)部,故證明直線l與圓C相交;(2)設(shè)出點(diǎn),利用垂直得到等量關(guān)系,整理后即為軌跡方程;(3)利用Q、A、B、C四點(diǎn)共圓,得到此圓方程,聯(lián)立,求出相交弦的方程,即直線的方程,根據(jù)直線過的定點(diǎn),得到,從而得到點(diǎn)Q恒在直線上.【小問1詳解】證明:直線過定點(diǎn),代入得:,故在圓內(nèi),故直線l與圓C相交;【小問2詳解】圓的圓心為,設(shè)點(diǎn),由垂徑定理得:,即,化簡(jiǎn)得:,點(diǎn)M的軌跡方程為:【小問3詳解】設(shè)點(diǎn),由題意得:Q、A、B、C四點(diǎn)共圓,且圓的方程為:,即,與圓C的方程聯(lián)立,消去二次項(xiàng)得:,即為直線的方程,因?yàn)橹本€過定點(diǎn),所以,解得:,所以當(dāng)m變化時(shí),點(diǎn)Q恒在直線上.【點(diǎn)睛】本題的第三問是稍有難度的,處理方法是根據(jù)四點(diǎn)共圓,直徑的端點(diǎn)坐標(biāo),求出此圓的方程,與曲線聯(lián)立后得到相交弦的方程,是處理此類問題的關(guān)鍵.21、(1)圓心為,半徑為;(2)答案見解析.【解析】(1)寫出圓標(biāo)準(zhǔn)方程即得解;(2)選擇條件①:直線應(yīng)過圓心即直線過點(diǎn)和,即得解;選擇條件②:直線應(yīng)與垂直,求出直線的方程即得解;選擇條件③:不存在滿足條件的直線.【小問1詳解】解:由圓的方程整理可得,所以圓心為,半徑為.小問2詳解】選擇條件①:若直線被圓所截得的弦長(zhǎng)最長(zhǎng),則直線應(yīng)過圓心即直線過點(diǎn)和,所以直線的斜率為,則直線的方程為.選擇條件②:若直線過點(diǎn)被圓所截得的弦長(zhǎng)最短,則直線應(yīng)與垂直.又,所以.故直線方程為.選擇條件③:經(jīng)過點(diǎn)的直線被圓所截得的最短弦長(zhǎng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子商務(wù)物流效率提升的科技應(yīng)用研究
- 環(huán)境適應(yīng)性建筑的設(shè)計(jì)與實(shí)踐
- 電商平臺(tái)在智慧城市建設(shè)中的作用與價(jià)值
- 2025年那曲貨物運(yùn)輸駕駛員從業(yè)資格考試系統(tǒng)
- 2025年新疆貨運(yùn)從業(yè)資格證模擬題庫(kù)及答案
- 2025年河南貨運(yùn)車從業(yè)資格證考試
- 電商物流的未來(lái)趨勢(shì)-智能快遞業(yè)務(wù)發(fā)展
- 用戶參與的現(xiàn)代產(chǎn)品設(shè)計(jì)美學(xué)探討
- 生態(tài)農(nóng)業(yè)對(duì)經(jīng)濟(jì)發(fā)展的促進(jìn)作用研究
- 電力系統(tǒng)的穩(wěn)定性與經(jīng)濟(jì)性分析
- 質(zhì)保管理制度
- 2024新版《藥品管理法》培訓(xùn)課件
- 浙江省杭州市2024年中考英語(yǔ)真題(含答案)
- 《陸上風(fēng)電場(chǎng)工程設(shè)計(jì)概算編制規(guī)定及費(fèi)用標(biāo)準(zhǔn)》(NB-T 31011-2019)
- 人事測(cè)評(píng)理論與方法-課件
- 最新卷宗的整理、裝訂(全)課件
- 信訪事項(xiàng)受理、辦理、復(fù)查、復(fù)核、聽證程序課件
- 【北京】施工現(xiàn)場(chǎng)安全生產(chǎn)標(biāo)準(zhǔn)化管理圖集
- 部編版小學(xué)道德與法治五年級(jí)下冊(cè)教案(全冊(cè))
- 第二講共振理論、有機(jī)酸堿理論
- 研究性學(xué)習(xí)課題——有趣對(duì)聯(lián)
評(píng)論
0/150
提交評(píng)論