版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
四川省綿陽市綿陽中學2024屆高二數(shù)學第一學期期末經(jīng)典試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.(5分)已知集合A={x|?2<x<4},集合B={x|(x?6)(x+1)<0},則A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|?2<x<?1} D.{x|?1<x<4}2.若雙曲線的一條漸近線方程為.則()A. B.C.2 D.43.在區(qū)間上隨機取一個數(shù),則事件“曲線表示圓”的概率為()A. B.C. D.4.已知集合M={0,x},N={1,2},若M∩N={2},則M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能確定5.已知雙曲線的離心率為2,則()A.2 B.C. D.16.“楊輝三角”是中國古代重要的數(shù)學成就,它比西方的“帕斯卡三角形”早了多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù),,,,…構(gòu)成的數(shù)列的第項,則的值為()A. B.C. D.7.已知一個乒乓球從米高的高度自由落下,每次落下后反彈的高度是原來高度的倍,則當它第8次著地時,經(jīng)過的總路程是()A. B.C. D.8.橢圓C:的焦點在x軸上,其離心率為則橢圓C的長軸長為()A.2 B.C.4 D.89.的展開式中的系數(shù)是()A. B.C. D.10.已知,,則的最小值為()A. B.C. D.11.2018年,倫敦著名的建筑事務所steynstudio在南非完成了一個驚艷世界的作品一一雙曲線建筑的教堂,白色的波浪形屋頂像翅膀一樣漂浮,建筑師通過雙曲線的設計元素賦予了這座教堂輕盈,極簡和雕塑般的氣質(zhì),如圖.若將此大教堂外形弧線的一段近似看成焦點在y軸上的雙曲線下支的一部分,且該雙曲線的上焦點到下頂點的距離為18,到漸近線距離為12,則此雙曲線的離心率為()A. B.C. D.12.一直線過點,則此直線的傾斜角為()A.45° B.135°C.-45° D.-135°二、填空題:本題共4小題,每小題5分,共20分。13.參加數(shù)學興趣小組的小何同學在打籃球時,發(fā)現(xiàn)當籃球放在地面上時,籃球的斜上方燈泡照過來的光線使得籃球在地面上留下的影子有點像數(shù)學課堂上學過的橢圓,但他自己還是不太確定這個想法,于是回到家里翻閱了很多參考資料,終于明白自己的猜想是沒有問題的,而且通過學習,他還確定地面和籃球的接觸點(切點)就是影子橢圓的焦點.他在家里做了個探究實驗:如圖所示,桌面上有一個籃球,若籃球的半徑為個單位長度,在球的右上方有一個燈泡(當成質(zhì)點),燈泡與桌面的距離為個單位長度,燈泡垂直照射在平面的點為,影子橢圓的右頂點到點的距離為個單位長度,則這個影子橢圓的離心率______.14.若命題“”是假命題,則a的取值范圍是_______.15.已知圓,直線與圓C交于A,B兩點,且,則______16.數(shù)列滿足,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱柱的側(cè)棱垂直于底面,,,,,分別是,的中點.(Ⅰ)證明:平面;(Ⅱ)求二面角的余弦值.18.(12分)已知數(shù)列為等差數(shù)列,公差,前項和為,,且成等比數(shù)列(1)求數(shù)列的通項公式(2)設,求數(shù)列的前項和19.(12分)已知函數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個不相等的零點,證明:20.(12分)已知圓C過點,,它與x軸的交點為,,與y軸的交點為,,且.(1)求圓C的標準方程;(2)若,直線,從點A發(fā)出的一條光線經(jīng)直線l反射后與圓C有交點,求反射光線所在的直線的斜率的取值范圍.21.(12分)在平面直角坐標系xOy中,已知點、,點M滿足,記點M的軌跡為C(1)求C的方程;(2)若直線l過圓圓心D且與圓交于A,B兩點,點P為C上一個動點,求的最小值22.(10分)已知橢圓與拋物線有一個相同的焦點,且該橢圓的離心率為,(Ⅰ)求該橢圓的標準方程:(Ⅱ)求過點的直線與該橢圓交于A,B兩點,O為坐標原點,若,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由(x?6)(x+1)<0,得?1<x<6,從而有B={x|?1<x<6},所以A∩B={x|?1<x<4},故選D2、C【解析】求出漸近線方程為,列出方程求出.【詳解】雙曲線的漸近線方程為,因為,所以,所以.故選:C3、D【解析】先求出曲線表示圓參數(shù)的范圍,再由幾何概率可得答案.【詳解】由可得曲線表示圓,則解得或又所以曲線表示圓的概率為故選:D4、C【解析】集合M={0,x},N={1,2},若M∩N={2},則.所以.故選C.點睛:集合的交集即為由兩個集合的公共元素組成的集合,集合的并集即由兩集合的所有元素組成.5、D【解析】由雙曲線的性質(zhì),直接表示離心率,求.【詳解】由雙曲線方程可知,因為,所以,解得:,又,所以.故選:D【點睛】本題考查雙曲線基本性質(zhì),意在考查數(shù)形結(jié)合分析問題和解決問題能力,屬于中檔題型,一般求雙曲線離心率的方法:
直接法:直接求出,然后利用公式求解;2.公式法:,3.構(gòu)造法:根據(jù)條件,可構(gòu)造出的齊次方程,通過等式兩邊同時除以,進而得到關于的方程.6、B【解析】根據(jù)楊輝三角可得數(shù)列的遞推公式,結(jié)合累加法可得數(shù)列的通項公式與.【詳解】由已知可得數(shù)列的遞推公式為,且,且,故,,,,,等式左右兩邊分別相加得,,故選:B.7、C【解析】根據(jù)等比數(shù)列的求和公式求解即可.【詳解】從第1次著地到第2次著地經(jīng)過的路程為,第2次著地到第3次著地經(jīng)過的路程為,組成以為首項,公比為的等比數(shù)列,所以第1次著地到第8次著地經(jīng)過的路程為,所以經(jīng)過的總路程是.故答案為:C.8、C【解析】根據(jù)橢圓的離心率,即可求出,進而求出長軸長.【詳解】由橢圓的性質(zhì)可知,橢圓的離心率為,則,即所以橢圓C的長軸長為故選:C.【點睛】本題主要考查了橢圓的幾何性質(zhì),屬于基礎題.9、B【解析】根據(jù)二項式定理求出答案即可.【詳解】的展開式中的系數(shù)是故選:B10、B【解析】將代數(shù)式展開,然后利用基本不等式可求出該代數(shù)式的最小值.【詳解】,,由基本不等式得,當且僅當時,等號成立.因此,的最小值為.故選B.【點睛】本題考查利用基本不等式求最值,在利用基本不等式時要注意“一正、二定、三相等”條件的成立,考查計算能力,屬于中等題.11、A【解析】設出雙曲線的方程,根據(jù)已知條件列出方程組即可求解.【詳解】設雙曲線的方程為,由雙曲線的上焦點到下頂點的距離為18,即,上焦點的坐標為,其中一條漸近線為,上焦點到漸近線的距離為,則,解得,,即,故選:.12、A【解析】根據(jù)斜率公式求得直線的斜率,得到,即可求解.【詳解】設直線的傾斜角為,由斜率公式,可得,即,因為,所以,即此直線的傾斜角為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立平面直角坐標系,解得圖中N、Q的橫坐標,列方程組即可求得橢圓的a、c,進而求得橢圓的離心率.【詳解】以A為原點建立平面直角坐標系,則,,直線PR的方程為設,由到直線PR的距離為1,得,解之得或(舍)則,又設直線PN方程為由到直線PN的距離為1,得,整理得則,又,故則直線PN的方程為,故,由,解得,故橢圓的離心率故答案為:【點睛】數(shù)形結(jié)合是數(shù)學解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。14、【解析】依題意可得是真命題,參變分離得到,再利用基本不等式計算可得;【詳解】解:因為命題“”是假命題,所以命題“”是真命題,即,所以,因為,當且僅當即時取等號,所以,即故答案:15、-2【解析】將圓的一般方程化為標準方程,結(jié)合垂徑定理和勾股定理表示出圓心到弦的距離,再由點到直線的距離公式表示出圓心到弦的距離,解方程即可求得的值.【詳解】解:將圓的方程化為標準方程可得,圓心為,半徑圓C與直線相交于、兩點,且,由垂徑定理和勾股定理得圓心到直線的距離為,由點到直線距離公式得,所以,解得,故答案為:.16、【解析】根據(jù)遞推關系依次求得的值.【詳解】依題意數(shù)列滿足,,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】分析:依題意可知兩兩垂直,以點為原點建立空間直角坐標系,(1)利用直線的方向向量和平面的法向量垂直,即可證得線面平面;(2)求出兩個平面的法向量,利用兩個向量的夾角公式,即可求解二面角的余弦值.詳解:依條件可知、、兩兩垂直,如圖,以點為原點建立空間直角坐標系.根據(jù)條件容易求出如下各點坐標:,,,,,,,.(Ⅰ)證明:∵,,是平面的一個法向量,且,所以.又∵平面,∴平面;(Ⅱ)設是平面的法向量,因為,,由,得.解得平面的一個法向量,由已知,平面的一個法向量為,,∴二面角的余弦值是.點睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉(zhuǎn)化,通過嚴密推理,明確角的構(gòu)成.同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.18、(1);(2)【解析】(1)根據(jù)成等比數(shù)列,有,即求解.(2)由(1)可得,,∴,再利用裂項相消法求和.【詳解】(1)由成等比數(shù)列,得,即,整理得,∵,∴,∴,即(2)由(1)可得,,∴,故【點睛】本題主要考查等差數(shù)列的基本運算和裂項相消法求和,還考查了運算求解的能力,屬于中檔題.19、(1)單調(diào)遞增區(qū)間是(4,+∞),單調(diào)遞減區(qū)間是(0,4);(2)證明見解析.【解析】(1)求的導函數(shù),結(jié)合定義域及導數(shù)的符號確定單調(diào)區(qū)間;(2)法一:討論、時的零點情況,即可得,構(gòu)造,利用導數(shù)研究在(0,2a)恒成立,結(jié)合單調(diào)性證明不等式;法二:設,由零點可得,進而應用分析法將結(jié)論轉(zhuǎn)化為證明,綜合換元法、導數(shù)證明結(jié)論即可.【小問1詳解】函數(shù)的定義域為(0,+∞),當a=2時,,則令得,x>4;令得,0<x<4;所以,單調(diào)遞增區(qū)間是(4,+∞);單調(diào)遞減區(qū)間是(0,4).【小問2詳解】法一:當a≤0時,>0在(0,+∞)上恒成立,故函數(shù)不可能有兩個不相等的零點,當a>0時,函數(shù)在(2a,+∞)上單調(diào)遞增,在(0,2a)上單調(diào)遞減,因為函數(shù)有兩個不相等的零點,則,不妨設,設,(0<x<2a),則,所以,由a>0知:在(0,2a)恒成立,所以在(0,2a)上單調(diào)遞減,即>=0,所以,即,又,故,因為,所以,因為函數(shù)在(2a,+∞)上單調(diào)遞增,所以,即法二:不妨設,由題意得,,得,即,要證,只需證,即證:,即,令,,則,所以在區(qū)間(1,+∞)單調(diào)遞減,故<=0,即恒成立因此,所以.【點睛】關鍵點點睛:第二問,法一:應用極值點偏移方法構(gòu)造,將問題轉(zhuǎn)化為在(0,2a)恒成立,法二:根據(jù)零點可得,再由分析法將問題化為證明,構(gòu)造函數(shù),綜合運用換元法、導數(shù)證明結(jié)論.20、(1);(2).【解析】(1)設圓C的一般式方程為:,然后根據(jù)題意列出方程,解出D,E,F(xiàn)的值即可得到圓的方程;(2)先求出點關于直線l的對稱點,設反射光線所在直線方程為,利用直線和圓的位置關系列出不等式解出k的取值范圍即可.【詳解】(1)設圓C的一般式方程為:,令,得,所以,令,得,所以,所以有,所以,①又圓C過點,,所以有,②,③由①②③得,,,所以圓C的一般式方程為,標準方程為;(2)設關于的對稱點,所以有,解之得,故點,∴反射光線所在直線過點,設反射光線所在直線方程為:,所以有,所以反射光線所在的直線斜率取值范圍為.【點睛】本題考查圓的方程的求法,直線和圓的位置關系的應用,考查邏輯思維能力和運算求解能力,屬于??碱}.21、(1)(2)23【解析】(1)根據(jù)雙曲線的定義判斷軌跡,直接寫出軌跡方程即可;(2)設,利用向量坐標運算計算,再由二次函數(shù)求最值即可.【小問1詳解】由,則軌跡C是以點、為左、右焦點的雙曲線的右支,設軌跡C的方程為,則,可得,,所以C的方程為;【小問2詳解】設,則,且,圓心,則因為,則當時,取最小值23.22、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根據(jù)題意可以求出橢圓的焦點,再根據(jù)橢圓的離心率公式,求出的值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度高端餐飲連鎖品牌廚房承包合作協(xié)議3篇
- 二零二五年度畜牧產(chǎn)業(yè)扶貧項目合作買賣合同4篇
- 二零二五餐飲業(yè)冷鏈物流技術服務合同3篇
- 二零二五年度船舶動力系統(tǒng)船員勞務合同范本(全新修訂)4篇
- 2025年度汽車租賃公司股份增資擴股合同4篇
- 二零二四年度綜合布線弱電項目施工合作協(xié)議3篇
- 二零二四年生態(tài)園林木工班組承包協(xié)議書3篇
- 2025年度打印機設備租賃與節(jié)能改造合同2篇
- 二零二四年度藝術品抵押貸款執(zhí)行合同范本6篇
- 二零二五年度房產(chǎn)買賣協(xié)議書(含房屋租賃權(quán)處理)
- 乳腺癌的綜合治療及進展
- 【大學課件】基于BGP協(xié)議的IP黑名單分發(fā)系統(tǒng)
- 2025年八省聯(lián)考高考語文試題真題解讀及答案詳解課件
- 信息安全意識培訓課件
- 2024年山東省泰安市初中學業(yè)水平生物試題含答案
- 美的MBS精益管理體系
- 中國高血壓防治指南(2024年修訂版)解讀課件
- 2024安全員知識考試題(全優(yōu))
- 2024年衛(wèi)生資格(中初級)-中醫(yī)外科學主治醫(yī)師考試近5年真題集錦(頻考類試題)帶答案
- 中國大百科全書(第二版全32冊)08
- 第六單元 中華民族的抗日戰(zhàn)爭 教學設計 2024-2025學年統(tǒng)編版八年級歷史上冊
評論
0/150
提交評論