天一大聯(lián)盟2023年數學高二上期末檢測模擬試題含解析_第1頁
天一大聯(lián)盟2023年數學高二上期末檢測模擬試題含解析_第2頁
天一大聯(lián)盟2023年數學高二上期末檢測模擬試題含解析_第3頁
天一大聯(lián)盟2023年數學高二上期末檢測模擬試題含解析_第4頁
天一大聯(lián)盟2023年數學高二上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

天一大聯(lián)盟2023年數學高二上期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術》是我國古代的數學巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次從高變低)5個人共出100錢,按照爵位從高到低每人所出錢數成等差數列,問這5個人各出多少錢?”在這個問題中,若公士出28錢,則不更出的錢數為()A.14 B.20C.18 D.162.函數極小值為()A. B.C. D.3.已知圓的方程為,則實數m的取值范圍是()A. B.C. D.4.下列求導運算正確的是()A. B.C. D.5.函數的圖象大致為()A. B.C. D.6.已知點P是圓上一點,則點P到直線的距離的最大值為()A.2 B.C. D.7.邊長為的正方形沿對角線折成直二面角,、分別為、的中點,是正方形的中心,則的大小為()A. B.C. D.8.焦點在軸的正半軸上,且焦點到準線的距離為的拋物線的標準方程是()A. B.C. D.9.有關橢圓敘述錯誤的是()A.長軸長等于4 B.短軸長等于4C.離心率為 D.的取值范圍是10.數列滿足,且,則的值為()A.2 B.1C. D.-111.《鏡花緣》是清代文人李汝珍創(chuàng)作的長篇小說,書中有這樣一個情節(jié):一座樓閣到處掛滿了五彩繽紛的大小燈球,燈球有兩種,一種是大燈下綴2個小燈,另一種是大燈下綴4個小燈,大燈共360個,小燈共1200個.若在這座樓閣的燈球中,隨機選取一個燈球,則這個燈球是大燈下綴4個小燈的概率為A. B.C. D.12.直線(t為參數)被圓所截得的弦長為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線在點處的切線的斜率為,則______14.已知,,,若,則______.15.若,,三點共線,則m的值為___________.16.在等比數列中,,,若數列滿足,則數列的前項和為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知橢圓:()的左、右焦點分別為、,離心率為.過的直線與橢圓的一個交點為,過垂直于的直線與橢圓的一個交點為,.(1)求橢圓的方程和點的軌跡的方程;(2)若曲線上的動點到直線:的最大距離為,求的值.18.(12分)設:實數滿足,:實數滿足(1)若,且為真,求實數的取值范圍;(2)若是的必要不充分條件,求實數的取值范圍19.(12分)在平面直角坐標系中,設點,直線,點P在直線l上移動,R是線段PF與y軸的交點,也是PF的中點.,(1)求動點Q的軌跡的方程E;(2)過點F作兩條互相垂直的曲線E的弦AB、CD,設AB、CD的中點分別為M,N.求直線MN過定點R的坐標20.(12分)已知圓:,直線:.圓與圓關于直線對稱(1)求圓的方程;(2)點是圓上的動點,過點作圓的切線,切點分別為、.求四邊形面積的取值范圍21.(12分)如圖,在三棱錐中,,平面,,分別為棱,的中點.(1)求證:;(2)若,,二面角的大小為,求三棱錐的體積.22.(10分)如圖,AC是圓O的直徑,B是圓O上異于A,C的一點,平面ABC,點E在棱PB上,且,,.(1)求證:;(2)當三棱錐的體積最大時,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據題意,建立等差數列模型,結合等差數列公式求解即可.【詳解】解:根據題意,設每人所出錢數成等差數列,公差為,前項和為,則由題可得,解得,所以不更出的錢數為.故選:D.2、A【解析】利用導數分析函數的單調性,可求得該函數的極小值.【詳解】對函數求導得,令,可得或,列表如下:減極小值增極大值減所以,函數的極小值為.故選:A.3、C【解析】根據可求得結果.【詳解】因為表示圓,所以,解得.故選:C【點睛】關鍵點點睛:掌握方程表示圓的條件是解題關鍵.4、B【解析】根據基本初等函數的導數和求導法則判斷.【詳解】,,,,只有B正確.故選:B.【點睛】本題考查基本初等函數的導數公式,考查導數的運算法則,屬于基礎題.5、A【解析】由題意首先確定函數的奇偶性,然后考查函數在特殊點的函數值排除錯誤選項即可確定函數的圖象.【詳解】由函數的解析式可得:,則函數為奇函數,其圖象關于坐標原點對稱,選項CD錯誤;當時,,選項B錯誤.故選:A.【點睛】函數圖象的識辨可從以下方面入手:(1)從函數的定義域,判斷圖象的左右位置;從函數的值域,判斷圖象的上下位置.(2)從函數的單調性,判斷圖象的變化趨勢.(3)從函數的奇偶性,判斷圖象的對稱性.(4)從函數的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項6、C【解析】求出圓心到直線的距離,由這個距離加上半徑即得【詳解】由圓,可得圓心坐標,半徑,則圓心C到直線的距離為,所以點P到直線l的距離的最大值為.故選:C7、B【解析】建立空間直角坐標系,以向量法去求的大小即可解決.【詳解】由題意可得平面,,則兩兩垂直以O為原點,分別以OB、OA、OC所在直線為x、y、z軸建立空間直角坐標系則,,,,又,則故選:B8、A【解析】直接由焦點位置及焦點到準線的距離寫出標準方程即可.【詳解】由焦點在軸的正半軸上知拋物線開口向上,又焦點到準線的距離為,故拋物線的標準方程是.故選:A.9、A【解析】根據題意求出,進而根據橢圓的性質求得答案.【詳解】橢圓方程化為:,則,則長軸長為8,短軸長為4,離心率,x的取值范圍是.即A錯誤,B,C,D正確.故選:A.10、D【解析】根據數列的遞推關系式,求得數列的周期性,結合周期性得到,即可求解.【詳解】解:由題意,數列滿足,且,可得,可得數列是以三項為周期的周期數列,所以.故選:D.11、B【解析】設大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據題意求得,再由古典概型及其概率的公式,即可求解【詳解】設大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據題意可得,解得,則燈球的總數為個,故這個燈球是大燈下綴4個小燈的概率為,故選B【點睛】本題主要考查了古典概型及其概率的計算,其中解答中根據題意列出方程組,求得兩種燈球的數量是解答的關鍵,著重考查了運算與求解能力,屬于基礎題12、C【解析】求得直線普通方程以及圓的直角坐標方程,利用弦長公式即可求得結果.【詳解】因為直線的參數方程為:(t為參數),故其普通方程為,又,根據,故可得,其表示圓心為,半徑的圓,則圓心到直線的距離,則該直線截圓所得弦長為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】對求導,根據題設有且,即可得目標式的值.【詳解】由題設,且定義域為,則,所以,整理得,又,所以,兩邊取對數有,得:,即.故答案為:.14、【解析】根據題意,由向量坐標表示,列出方程,求出,,即可得出結果.【詳解】因為,,,若,則,解得,所以.故答案為:.【點睛】本題主要考查由向量坐標表示求參數,屬于基礎題型.15、【解析】根據三點共線與斜率的關系即可得出【詳解】由,,三點共線,可知所在的直線與所在的直線平行,又,由已知可得,解得故答案為:16、【解析】求出等比數列的通項公式,可得出的通項公式,推導出數列為等差數列,利用等差數列的求和公式即可得解.【詳解】設等比數列的公比為,則,則,所以,,則,所以,數列為等差數列,故數列的前項和為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)橢圓的方程為,點的軌跡的方程為(2)【解析】(1)由題意可得,求出,再結合,求出,從而可得橢圓的方程,設,則由題意可得,坐標代入化簡可得點的軌跡的方程,(2)由題意結合點到直線的距離公式可得,設,將直線方程代入橢圓方程中消去,整理利用根與系數的關系,由,可得,因為,代入化簡計算可求得答案【小問1詳解】由題意得,解得,則,所以橢圓的方程,設,則由題意可得,所以,所以,所以點軌跡的方程為【小問2詳解】由(1)知曲線是以原點為圓心,1為半徑的圓,因為曲線上的動點到直線:的最大距離為,所以,得,設,由,得,所以,,因為,所以,所以,所以,因為,所以,所以,,所以,得,得(舍去),或18、(1)(2)【解析】(1)根據二次不等式與分式不等式的求解方法求得命題p,q為真時實數x的取值范圍,再求交集即可;(2)先求得,再根據是的必要不充分條件可得,再根據集合包含關系,根據區(qū)間端點列不等式求解即可【小問1詳解】當時,,解得,即p為真時,實數x的取值范圍為.由,解得,即q為真時,實數x的取值范圍為若為真,則,解得實數x的取值范圍為【小問2詳解】若p是q的必要不充分條件,則且設,,則,又由,得,因為,則,有,解得因此a的取值范圍為19、(1)(2)【解析】(1)由圖中的幾何關系可知,故可知動點Q的軌跡E是以F為焦點,l為準線的拋物線,但不能和原點重合,即可直接寫出拋物線的方程;(2)設出直線AB的方程,把點、的坐標代入拋物線方程,兩式作差后,再利用中點坐標公式求出點M的坐標,同理求出點的坐標,即可求出直線MN的方程,最后可求出直線MN過哪一定點.【小問1詳解】∵直線的方程為,點R是線段FP的中點且,∴RQ是線段FP的垂直平分線,∵,∴是點Q到直線l的距離,∵點Q在線段FP的垂直平分線,∴,則動點Q的軌跡E是以F為焦點,l為準線的拋物線,但不能和原點重合,即動點Q軌跡的方程為.【小問2詳解】設,,由題意直線AB斜率存在且不為0,設直線AB的方程為,由已知得,兩式作差可得,即,則,代入可得,即點M的坐標為,同理設,,直線的方程為,由已知得,兩式作差可得,即,則,代入可得,即點的坐標為,則直線MN的斜率為,即方程為,整理得,故直線MN恒過定點.20、(1)(2)【解析】(1)圓關于直線對稱,半徑不變,只需求出圓心對稱的坐標即可.(2)將四邊形面積分成兩個全等的直角三角形,利用直角三角形的性質,一條直角邊不變時,斜邊與另外一條直角邊的大小成正相關,從而得到面積的最小值與最大值.【小問1詳解】由題可知的圓心為,圓的半徑與之相同,圓心與之關于對稱,設的圓心為,故可根據中點在對稱的直線上得到①,根據斜率相乘為-1得到②,聯(lián)立①②可得,所以圓心坐標為,且半徑為,故的方程為【小問2詳解】連接,將四邊形分割成兩個全等的直角三角形,所以有,四邊形面積的范圍可轉化為MP長度的范圍,在中,根據勾股定理可知,因為半徑長度不變,所以最大時最大;所以最小時最??;畫出如下圖,當動點P移動至在時面積最小,時面積最大;設點P的坐標為,所以有,解得,所以,,所以,所以;,所以.所以21、(1)證明見解析;(2).【解析】(1)利用線面垂直的判定定理及性質即證;(2)利用坐標法,結合條件可求,然后利用體積公式即求.【小問1詳解】,是的中點,,平面,平面,,又,平面,平面,;【小問2詳解】,,,取的中點,連接,則,平面,以為坐標原點,分別以、、所在直線為、、軸建立空間直角坐標系,設,則,,,,,,,,設平面的一個法向量為,由,取,得;設平面的一個法向量為,由,取,得,∵二面角的大小為,,解得,,則三棱錐的體積.22、(1)證明見解析(2)【解析】(1)由圓的性質可得,再由線面垂直的性質可得,從而由線面垂直的判定定理可得平面PAB,所以得,再結合已知條件可得平面PBC,由線面垂直的性質可得結論;(2)由已知條件結合基本不等式可得當三棱錐的體積最大時,是等腰直角三角形,,從而以OB,OC所在直線分別為x軸,y軸,以過點O且垂直于圓O平面的直線為z軸建立如圖所示的空間直角坐標系,利用空間向量求解.【小問1詳解】證明:因為AC是圓O的直徑,點B是圓O上不與A,C重合的一個動點,所以.因為平面ABC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論