版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
...wd...
...wd...
...wd...
2016AMC12B
Problem1
Whatisthevalueof
when
?
Solution
By:Dragonfly
Wefindthat
isthesameas
,sinceanumbertothepowerof
isjustthereciprocalofthatnumber.Wethengettheequationtobe
Wecanthensimplifytheequationtoget
Problem2
Theharmonicmeanoftwonumberscanbecalculatedastwicetheirproductdividedbytheirsum.Theharmonicmeanof
and
isclosesttowhichinteger?
Solution
By:dragonfly
Sincetheharmonicmeanis
timestheirproductdividedbytheirsum,wegettheequation
whichisthen
whichisfinallyclosestto
.
Problem3
Let
.Whatisthevalueof
?
Solution
By:dragonfly
Firstofall,letspluginallofthe
'sintotheequation.
Thenwesimplifytoget
whichsimplifiesinto
andfinallyweget
Problem4
Theratioofthemeasuresoftwoacuteanglesis
,andthecomplementofoneofthesetwoanglesistwiceaslargeasthecomplementoftheother.Whatisthesumofthedegreemeasuresofthetwoangles?
Solution
By:dragonfly
Wesetupequationstofindeachangle.Thelargeranglewillberepresentedas
andthelargeranglewillwerepresentedas
,indegrees.Thisimpliesthat
and
sincethelargertheoriginalangle,thesmallerthecomplement.
Wethenfindthat
and
,andtheirsumis
Problem5
TheWarof
startedwithadeclarationofwaronThursday,June
,
.Thepeacetreatytoendthewarwassigned
dayslater,onDecember
,
.Onwhatdayoftheweekwasthetreatysigned?
Solution
By:dragonfly
Tofindwhatdayoftheweekitisin
days,wehavetodivide
by
toseetheremainder,andthenaddtheremaindertothecurrentday.Wegetthat
hasaremainderof2,soweincreasethecurrentdayby
toget
Problem6
Allthreeverticesof
lieontheparaboladefinedby
,with
attheoriginand
paralleltothe
-axis.Theareaofthetriangleis
.Whatisthelengthof
?
Solution
By:Albert471
Plottingpoints
and
onthegraphshowsthattheyareat
and
,whichisisosceles.Bysettingupthetriangleareaformulayouget:
Makingx=4,andthelengthof
is
,sotheansweris
.
Problem7
Joshwritesthenumbers
.Hemarksout
,skipsthenextnumber
,marksout
,andcontinuesskippingandmarkingoutthenextnumbertotheendofthelist.Thenhegoesbacktothestartofhislist,marksoutthefirstremainingnumber
,skipsthenextnumber
,marksout
,skips
,marksout
,andsoontotheend.Joshcontinuesinthismanneruntilonlyonenumberremains.Whatisthatnumber?
Solution
ByAlbert471
Followingthepattern,youarecrossingout...
Time1:Everynon-multipleof
Time2:Everynon-multipleof
Time3:Everynon-multipleof
Followingthispattern,youareleftwitheverymultipleof
whichisonly.
Problem8
Athinpieceofwoodofuniformdensityintheshapeofanequilateraltrianglewithsidelength
inchesweighs
ounces.Asecondpieceofthesametypeofwood,withthesamethickness,alsointheshapeofanequilateraltriangle,hassidelengthof
inches.Whichofthefollowingisclosesttotheweight,inounces,ofthesecondpiece?
Solution1
By:dragonfly
Wecansolvethisproblembyusingsimilartriangles,sincetwoequilateraltrianglesarealwayssimilar.Wecanthenuse
.
Wecanthensolvetheequationtoget
whichisclosestto
Solution2
Anotherapproachtothisproblem,verysimilartothepreviousonebutperhapsexplainedmorethoroughly,istouseproportions.First,sincethethicknessanddensityarethesame,wecansetupaproportionbasedontheprinciplethat
,thus
.
However,sincedensityandthicknessarethesameand
(recognizingthattheareaofanequilateraltriangleis
),wecansaythat
.
Then,byincreasingsbyafactorof
,
isincreasedbyafactorof
,thus
or
.
Problem9
Carldecidedtofenceinhisrectangulargarden.Hebought
fenceposts,placedoneoneachofthefourcorners,andspacedouttherestevenlyalongtheedgesofthegarden,leavingexactly
yardsbetweenneighboringposts.Thelongersideofhisgarden,includingthecorners,hastwiceasmanypostsastheshorterside,includingthecorners.Whatisthearea,insquareyards,ofCarl’sgarden?
Solution
ByAlbert471
Tostart,usealgebratodeterminethenumberofpostsoneachside.Youhave(thelongsidescountfor
becausetherearetwiceasmany)
(eachcornerisdoublecountedsoyoumustadd
)Makingtheshorterendhave
,andthelongerendhave
.
.Therefore,theansweris
Problem10
Aquadrilateralhasvertices,,,and,whereandareintegerswith.Theareaofis.Whatis?
Solution1
Bydistanceformulawehave.SImplifyingweget.Thusandhavetobeafactorof8.Theonlywayforthemtobefactorsofandremainintegersisifand.Sotheansweris
SolutionbyI_Dont_Do_Math
Solution2
Solutionbye_power_pi_times_i
BytheShoelaceTheorem,theareaofthequadrilateralis,so.Sinceandareintegers,and,so.
Problem11
Howmanysquareswhosesidesareparalleltotheaxesandwhoseverticeshavecoordinatesthatareintegerslieentirelywithintheregionboundedbytheline,thelineandtheline
Solution
Solutionbye_power_pi_times_i
(Note:diagramisneeded)
Ifwedrawapictureshowingthetriangle,weseethatitwouldbeeasiertocountthesquaresverticallyandnothorizontally.Theupperboundissquares,andthelimitforthe-valueissquares.Firstwecountthesquares.Inthebackrow,therearesquareswithlengthbecausegeneratessquaresfromto,andcontinuingonwehave,,andfor-valuesfor,,andintheequation.Sotherearesquareswithlengthinthefigure.Forsquares,eachsquaretakesupunleftandunup.Squarescanalsooverlap.Forsquares,thebackrowstretchesfromto,sotherearesquareswithlengthinabybox.Repeatingtheprocess,thenextrowstretchesfromto,sotherearesquares.Continuingandaddingupintheend,therearesquareswithlengthinthefigure.Squareswithlengthinthebackrowstartatandendat,sotherearesuchsquaresinthebackrow.Asthefrontrowstartsatandendsattherearesquareswithlength.Assquareswithlengthwouldnotfitinthetriangle,theansweriswhichis.
Problem12
Allthenumbersarewritteninaarrayofsquares,onenumberineachsquare,insuchawaythatiftwonumbersareconsecutivethentheyoccupysquaresthatshareanedge.Thenumbersinthefourcornersaddupto.Whatisthenumberinthecenter?
Solution
SolutionbyMlux:Drawamatrix.Noticethatnoadjacentnumberscouldbeinthecornerssincetwoconsecutivenumbersmustshareanedge.Nowfind4nonconsecutivenumbersthataddupto.Tryingworks.Placeeachoddnumberinthecornerinaclockwiseorder.Thenfillinthespaces.Therehastobeainbetweentheand.Thereisabetweenand.Thefinalgridshouldsimilartothis.
isinthemiddle.
Solution2
Ifwecolorthesquarelikeachessboard,sincethenumbersaltrenatebetweenevenandodd,andtherearefiveoddnumbersandfourevennumbers,theoddnumbersmustbeinthecorners/center,whiletheevennumbersmustbeontheedges.Sincetheoddnumbersaddupto25,andthenumbersinthecornersaddupto18,thenumberinthecentermustbe25-18=7
Problem13
AliceandBoblivemilesapart.OnedayAlicelooksduenorthfromherhouseandseesanairplane.AtthesametimeBoblooksduewestfromhishouseandseesthesameairplane.TheangleofelevationoftheairplaneisfromAlice'spositionandfromBob'sposition.Whichofthefollowingisclosesttotheairplane'saltitude,inmiles?
Solution
Let'ssetthealtitude=z,distancefromAlicetoairplane'sgroundposition(pointrightbelowairplane)=yanddistancefromBobtoairplane'sgroundposition=x
FromAlice'spointofview,..So,
FromBob'spointofview,..So,
Weknowthat+=
Solvingtheequation(byplugginginxandy),wegetz==about5.5.
So,answeris
solutionbysudeepnarala
Solution2
Non-trigsolutionbye_power_pi_times_i
SetthedistancefromAlice'sandBob'spositiontothepointdirectlybelowtheairplanetobeand,respectively.FromthePythagoreanTheorem,.Asbotharetriangles,thealtitudeoftheairplanecanbeexpressedasor.Solvingtheequation,weget.Pluggingthisintotheequation,weget,or(cannotbenegative),sothealtitudeis,whichisclosestto
Problem14
Thesumofaninfinitegeometricseriesisapositivenumber,andthesecondtermintheseriesis.Whatisthesmallestpossiblevalueof
Solution
Thesecondterminageometricseriesis,whereisthecommonratiofortheseriesandisthefirsttermoftheseries.Soweknowthatandwewishtofindtheminimumvalueoftheinfinitesumoftheseries.Weknowthat:andsubstitutingin,wegetthat.Fromhere,youcaneitherusecalculusorAM-GM.
Calculus:Let,then.Sinceandareundefined.Thismeansthatweonlyneedtofindwherethederivativeequals,meaning.So,meaningthat
AM-GMFor2positiverealnumbersand,.Letand.Then:.Thisimpliesthat.or.Rearranging
:.Thus,thesmallestvalueis.
Solution2
Asimpleapproachistoinitiallyrecognizethatand.Weknowthat,sincetheseriesmustconverge.Wecanstartbyobservingthegreatestanswerchoice,4.Therefore,,becausethatwouldmake,whichwouldmaketheseriesexceed4.Inordertominimizeboththeinitialtermandtherestoftheseries,wecanrecognizethatistheopitimalratio,thustheansweris.
Problem15
Allthenumbersareassignedtothesixfacesofacube,onenumbertoeachface.Foreachoftheeightverticesofthecube,aproductofthreenumbersiscomputed,wherethethreenumbersarethenumbersassignedtothethreefacesthatincludethatvertex.Whatisthegreatestpossiblevalueofthesumoftheseeightproducts?
Solution
Firstassigneachfacetheletters.Thesumoftheproductofthefacesis.Wecanfactorthisintowhichistheproductofthesumofeachpairofoppositefaces.Inordertomaximizeweusethenumbersor.
Problem16
Inhowmanywayscanbewrittenasthesumofanincreasingsequenceoftwoormoreconsecutivepositiveintegers?
Solution
Weproceedwiththisproblembyconsideringtwocases,when:1)Thereareanoddnumberofconsecutivenumbers,2)Thereareanevennumberofconsecutivenumbers.
Forthefirstcase,wecancleverlychoosetheconvenientformofoursequencetobe
becausethenoursumwilljustbe.Wenowhaveandwillhaveasolutionwhenisaninteger,namelywhenisadivisorof345.Wecheckthatwork,andnomore,becausedoesnotsatisfytherequirementsoftwoormoreconsecutiveintegers,andwhenequalsthenextbiggestfactor,,theremustbenegativeintegersinthesequence.Oursolutionsare.
Fortheevencases,wechooseoursequencetobeoftheform:sothesumis.Inthiscase,wefindoursolutionstobe.
Wehavefoundall7solutionsandouransweris.
Solution2
Thesumfromtowhereandareintegersandis
Letand
Ifwefactorintoallofitsfactorgroupswewillhaveseveralorderedpairswhere
Thenumberofpossiblevaluesforishalfthenumberoffactorsofwhichis
However,wehaveoneextraneouscaseofbecausehere,andwehavethesumofoneconsecutivenumberwhichisnotallowedbythequestion.
Thustheansweris
.
Problem17
Inshowninthefigure,,,,andisanaltitude.Pointsandlieonsidesand,respectively,sothatandareanglebisectors,intersectingatand,respectively.Whatis?
Solution
Gettheareaofthetrianglebyheron'sformula:UsetheareatofindtheheightAHwithknownbaseBC:Applyanglebisectortheoremontriangleandtriangle,wegetand,respectively.Fromnow,youcansimplyusetheanswerchoicesbecauseonlychoicehasinitandweknowthatthesegmentsonitallhaveintegrallengthssothatwillremainthere.However,byscalingupthelengthratio:and.weget.
Problem18
Whatistheareaoftheregionenclosedbythegraphoftheequation
Solution
Considerthecasewhen,.Noticethecircleintersecttheaxesatpointsand.Findtheareaofthiscircleinthefirstquadrant.Theareaismadeofasemi-circlewithradiusofandatriangle:Becauseofsymmetry,theareaisthesameinallfourquadrants.Theansweris
Problem19
Tom,Dick,andHarryareplayingagame.Startingatthesametime,eachofthemflipsafaircoinrepeatedlyuntilhegetshisfirsthead,atwhichpointhestops.Whatistheprobabilitythatallthreefliptheircoinsthesamenumberoftimes?
Solution1
By:dragonfly
Wecansolvethisproblembylistingitasaninfinitegeometricequation.Wegetthattohavethesameamountoftosses,theyhaveachanceofgettingallheads.Thenthenextprobabilityisallofthemgettingtailsandthenonthesecondtry,theyallgetheads.Theprobabilityofthathappeningis.Wethengetthegeometricequation
Andthenwefindthatequalstobecauseoftheformulaofthesumforaninfiniteseries,.
Solution2
Callita"win"iftheboysallfliptheircoinsthesamenumberoftimes,andtheprobabilitythattheywinis.Theprobabilitythattheywinontheirfirstflipis.Iftheydon'twinontheirfirstflip,thatmeanstheyallflippedtails(whichalsohappenswithprobability)andthattheirchancesofwinninghavereturnedtowhattheywereatthebeginning.Thiscoversallpossiblesequencesofwinningflips.Sowehave
Solvingforgives.
Problem20
Asetofteamsheldaround-robintournamentinwhicheveryteamplayedeveryotherteamexactlyonce.Everyteamwongamesandlostgames;therewerenoties.Howmanysetsofthreeteamswerethereinwhichbeat,beat,andbeat
Solution
Weusecomplementarycounting.Firstly,becauseeachteamplayedotherteams,thereareteamstotal.Allsetsthatdonothavebeat,beat,andbeathaveoneteamthatbeatsboththeotherteams.Thuswemustcountthenumberofsetsofthreeteamssuchthatoneteambeatsthetwootherteamsandsubtractthatnumberfromthetotalnumberofwaystochoosethreeteams.
Therearewaystochoosetheteamthatbeatthetwootherteams,andtochoosetwoteamsthatthefirstteambothbeat.Thisissets.Therearesetsofthreeteamstotal.Subtracting,weobtainasouranswer.
Problem21
Letbeaunitsquare.Letbethemidpointof.Forletbetheintersectionofand,andletbethefootoftheperpendicularfromto.Whatis
Solution
(ByQwertazertl)
Wearetaskedwithfindingthesumoftheareasofeverywhereisapositiveinteger.Wecanstartbyfindingtheareaofthefirsttriangle,.Thisisequalto??.Noticethatsincetriangleissimilartotriangleina1
:2ratio,mustequal(sincewearedealingwithaunitsquarewhosesidelengthsare1).isofcourseequaltoasitisthemid-pointofCD.Thus,theareaofthefirsttriangleis??.
Thesecondtrianglehasabaseequaltothatof(seethat~)andusingthesamesimilartrianglelogicaswiththefirsttriangle,wefindtheareatobe??.Ifwecontinueandtestthenextfewtriangles,wewillfindthatthesumofallisequaltoor
Thisisknownasatelescopingseriesbecausewecanseethateverytermafterthefirstisgoingtocancelout.Thus,thethesummationisequaltoandaftermultiplyingbythehalfoutinfront,wefindthattheansweris.
Problem22
Foracertainpositiveintegerlessthan,thedecimalequivalentofis,arepeatingdecimalofperiodof,andthedecimalequivalentofis,arepeatingdecimalofperiod.Inwhichintervaldoeslie?
Solution
Solutionbye_power_pi_times_i
If,mustbeafactorof.Also,bythesameprocedure,mustbeafactorof.Checkingthroughallthefactorsofandthatarelessthan,weseethatisasolution,sotheansweris.
Note:isalsoasolution,whichinvalidatesthismethod.However,weneedtoexamineallfactorsofthatarenotfactorsof,,or,or.Additionally,weneedtobeafactorofbutnot,,or.Indeed,satisfiestheserequirements.
Foranyonewhowantsmoreinformationaboutrepeatingdecimals,visit:
s:///wiki/Repeating_decimal
Problem23
Whatisthevolumeoftheregioninthree-dimensionalspacedefinedbytheinequalitiesand
Solution1(NonCalculus)
Thefirstinequalityreferstotheinteriorofaregularoctahedronwithtopandbottomvertices.Itsvolumeis.Thesecondinequalitydescribesanidenticalshape,shiftedupwardsalongtheaxis.Theintersectionwillbeasimilaroctahedron,linearlyscaleddownbyhalf.Thusthevolumeoftheintersectionisone-eighthofthevolumeofthefirstoctahedron,givingananswerof.
Solution2(Calculus)
Let,thenwecantransformthetwoinequalitiestoand.Thenit'sclearthat,consider,,thensincetheareaofis,thevolumeis.Bysymmetry,thecasewhenisthesame.Thustheansweris.
Problem24
Thereareexactlyorderedquadrupletssuchthatand.Whatisthesmallestpossiblevaluefor?
Solution
Let,etc.,sothat.Thenforeachprimepowerintheprimefactorizationof,atleastoneoftheprimefactorizationsofhas,atleastonehas,andallmusthavewith.
Letbethenumberoforderedquadrupletsofintegerssuchthatforall,thelargestis,andthesmallestis.ThenfortheprimefactorizationwemusthaveSolet'stakealookatth
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 員工個(gè)人總結(jié)怎么寫2021
- 指導(dǎo)培養(yǎng)教師工作計(jì)劃
- 2022年高中工作計(jì)劃
- 2025年柔性自動(dòng)化裝備項(xiàng)目合作計(jì)劃書
- 自行車車形容2篇
- 2025年耐高溫濾料合作協(xié)議書
- 入職競(jìng)業(yè)協(xié)議書(2篇)
- 2025年高純石英纖維正交三向織物項(xiàng)目發(fā)展計(jì)劃
- 2025年青霉素類抗菌藥物合作協(xié)議書
- 地下車庫租賃協(xié)議
- 三年級(jí)上冊(cè)數(shù)學(xué)課件北師大版專項(xiàng)復(fù)習(xí) 操作題、圖形題專項(xiàng)
- 黃土高原水土流失說課
- 河北省石家莊市藥品零售藥店企業(yè)藥房名單目錄
- 《來自地球的力》名師教案
- 食堂虧損分析報(bào)告范文5篇
- 錨桿錨索鉆機(jī)操作規(guī)程
- 《錄音技術(shù)與藝術(shù)》課程教學(xué)大綱
- 部編版七年級(jí)語文上下冊(cè)教材解讀分析精編ppt
- InternationalSettlementsLecture3InternationalClearingSystems
- (完整版)景觀園林工程施工規(guī)范和技術(shù)要求
- (完整版)六年級(jí)轉(zhuǎn)述句練習(xí)題
評(píng)論
0/150
提交評(píng)論