基于clump的顆粒形狀系數(shù)的構(gòu)建_第1頁
基于clump的顆粒形狀系數(shù)的構(gòu)建_第2頁
基于clump的顆粒形狀系數(shù)的構(gòu)建_第3頁
基于clump的顆粒形狀系數(shù)的構(gòu)建_第4頁
基于clump的顆粒形狀系數(shù)的構(gòu)建_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

基于clump的顆粒形狀系數(shù)的構(gòu)建

1顆粒形狀對力學性能的影響j.s.dads等人的研究結(jié)果表明,砂化學的力學性質(zhì)對微觀參數(shù)(如形狀)的影響較大。常規(guī)宏觀分析方法多以土體作為連續(xù)介質(zhì)研究,且由于測量和量化分析的困難,對顆粒形狀影響的獨立深入研究仍較少?;陔x散元的顆粒流軟件的出現(xiàn),克服了傳統(tǒng)連續(xù)介質(zhì)力學模型的宏觀連續(xù)性假設(shè),可以從細觀層面上對砂土的工程特性進行數(shù)值模擬。使用顆粒流方法對顆粒形狀影響的研究在國內(nèi)外已取得一些進展。在國外,B.S.H.Kim和N.Kim研究了顆粒的形狀、顆粒正向與切向剛度比等對顆粒組原生各向異性的影響;M.Zeghal用3個顆粒形成一個“cluster”,作固結(jié)試驗并往復(fù)加載,研究了顆粒形狀對回彈模量的影響;A.K.Ashmawy等研究了在不排水往復(fù)加載試驗中,顆粒形狀對液化性質(zhì)的影響;A.A.Lizcano等在離散元中,用任意多邊形顆粒取代圓形顆粒,研究了顆粒形狀對顆粒組的零界應(yīng)力水平、配位數(shù)、力鏈形成等的影響;J.C.Santamarina和G.C.Cho研究了顆粒形狀對顆粒組固有各向異性以及應(yīng)力誘導(dǎo)各向異性的影響。在國內(nèi),曾遠和周健認為,顆粒形狀對剪脹效應(yīng)的影響比顆粒摩擦因數(shù)影響更明顯;常在研究了顆粒形狀對片狀黏性土力學性質(zhì)的影響。盡管已有研究在一定程度上揭示了顆粒形狀對顆粒材料力學特性的影響,但從顆粒變形機制的角度定義顆粒形狀系數(shù),以及在常規(guī)土工試驗的模擬中定量探討顆粒形狀與試驗結(jié)果關(guān)系仍亟待進一步深入研究,如:(1)在顆粒堆積試驗中,對顆粒粒徑以及粒間摩擦因數(shù)的研究較多,對顆粒形狀與自然休止角以及天然孔隙率聯(lián)系的研究較少;(2)在雙軸試驗中,材料的微觀參數(shù),如顆粒摩擦因數(shù)、孔隙率、剛度比等對材料宏觀力學特性影響的研究較多,但對于顆粒形狀,特別是顆粒形狀的量化參數(shù)與材料的宏觀力學特性聯(lián)系的研究仍較少;(3)在直剪試驗中探討顆粒形狀與材料抗剪強度,并從微細觀角度分析其原因的研究還少有報道。基于上述分析,本文在PFC2D中用等截面積法和等密度法生成圓形、類橢圓形、類正方形、類三角形等4種不同形狀的顆粒組,并結(jié)合顆粒材料變形特征,定義顆粒的“圓度”與“凹凸度”,構(gòu)建一個能定量描述顆粒形狀的形狀參數(shù)。用PFC2D內(nèi)置FISH語言開發(fā)顆粒堆積試驗、雙軸試驗和直接剪切試驗,探討顆粒形狀對試驗結(jié)果的影響,分析類砂土材料宏觀力學特性隨顆粒形狀變化的規(guī)律。2生成和描述2.1顆粒形狀對材料力學特性的影響圖1為在PFC2D中采用clump命令形成4種形狀顆粒黏結(jié)示意圖。類橢圓形顆粒、類正方形顆粒、類三角形顆粒的生成除需要形心點的坐標外,還需要一個表示其傾斜角度的方位角。在PFC2D模型中方位角是隨機指定的,其程序主要是通過urand和pi命令的結(jié)合實現(xiàn)。為了考察顆粒形狀對材料宏觀力學特性的影響,模型顆粒的生成需要保證2個條件:(1)截面積相等,即3種異形顆粒外輪廓線所圍成的面積與半徑為R1的圓形顆粒面積相同。對類橢圓形有R21=0.707R1,R22=R23=0.69R1,R24=R25=0.577R1,R26=R27=0.424R1,對類正方形有R3=0.4439R1,對類三角形有R4=0.698R1。(2)質(zhì)量密度相等。PFC2D中為滿足密度相等條件,需要通過調(diào)整黏結(jié)顆粒的密度達到,其換算公式如下:式中:ρd為顆粒黏結(jié)體的密度,∑Ad為各黏結(jié)顆粒面積之和,Ap為由外輪廓線圍成的面積,ρp為顆粒密度(注意:在PFC2D中,顆粒都假設(shè)為單位厚度的圓盤)。本文顆粒生成順序都是先在模型中生成圓形顆粒,再按照等面積法和等密度法將圓形顆粒替換成其他形狀顆粒。2.2顆粒外輪廓特征的表征對顆粒形狀影響的研究首先需要對顆粒形狀進行恰當?shù)拿枋?。已有的顆粒形狀量化分析方法,如涂新斌和王思敬給出的二維顆粒參數(shù)以及E.T.Bowman等采用分形理論和傅里葉分析方法對顆粒形狀進行描述的方法,或沒有將顆粒形狀定義與其變形特征相聯(lián)系,或其數(shù)學計算過程復(fù)雜,限制了其推廣和應(yīng)用。在工程中,通常用一個數(shù)或幾個數(shù)從不同角度來表述顆粒的形狀特征。為此筆者擬在已有研究的基礎(chǔ)上,結(jié)合顆粒材料變形過程,將形狀參數(shù)與定義的物理意義相聯(lián)系。實際顆粒材料的受力變形是由顆粒的移動產(chǎn)生的,在不考慮顆粒的破碎時,顆粒的移動包含顆粒的滑動(平移)及翻滾(自轉(zhuǎn))2個過程。顆粒自轉(zhuǎn)和平移都受到周圍顆粒的阻礙,轉(zhuǎn)動和平移過程都與顆粒的外輪廓特征密切相關(guān)。顆粒愈接近于圓形,其自轉(zhuǎn)愈容易。此外,顆粒的表面凹凸程度與其平移過程中受到的阻力聯(lián)系較緊密,顆粒的凹槽愈深,那么與其他顆粒的咬合作用更加明顯,顆粒移動產(chǎn)生的抗阻力就愈大。土體的宏觀內(nèi)摩擦力是顆粒抵抗滑動與翻滾能力的體現(xiàn)(用參數(shù)內(nèi)摩擦角?表達),從細觀分析有3部分來源:(1)顆粒抵抗轉(zhuǎn)動能力,受顆粒外形的圓形度支配;(2)顆粒間的宏觀嵌入咬合阻力,受顆粒外形的凹凸度支配;(3)顆粒接觸面、點之間的微觀咬合,受粒間摩擦因數(shù)μ支配。基于上述分析,對于顆粒的外輪廓特征可以用顆粒的圓形度、凹凸度來進行簡化與描述;顆粒的表面粗糙度可以用粒間摩擦因數(shù)來反映。其中圓形度的定義如下:式中:F1為圓形度,As為與物體同周長的圓面積,Af為實際測量的物體面積。顆粒的凹凸度定義為式中:F2為凹凸度,Af′為顆粒的最大內(nèi)接標準橢圓面積(標準橢圓保證最大內(nèi)接橢圓的長寬比與顆粒的長寬比相同,如圖1中虛線圓所示)。那么表征顆粒外輪廓特征的形狀系數(shù)就可以考慮用顆粒的圓形度和凹凸度的加權(quán)平均獲得。即形狀系數(shù)F=αF1+βF2(α+β=1),顯然α和β的取值與顆粒的實際形狀密切相關(guān),且與顆粒組的受力變形特性也存在聯(lián)系。比如在變形過程中,顆粒的自轉(zhuǎn)分量比顆粒的平移分量要大,那顆粒的圓形度影響會更大;如果平移的分量大,那顆粒的凹凸度影響更大。本文取α和β值都為0.5,即形狀系數(shù)為圓形度和凹凸度的平均值。按照上述計算方法,可得到本文所用到的4種外輪廓特征顆粒組(圓形、類橢圓形、類正方形和類三角形顆粒,如圖1所示)的F1,F2和F,具體見表1。3多臂積測試3.1顆粒堆積試驗pfc2c模型的基本控制參數(shù)圖2為顆粒堆積試驗?zāi)P褪疽鈭D。在PFC2D中,先在固定的矩形區(qū)域內(nèi)生成指定數(shù)目的顆粒,此時顆粒是呈“漂浮”狀態(tài),如圖2(a)所示。指定左邊和下邊“墻體”,注意下邊的“墻體”要長出較多。為了不讓“墻體”與顆粒之間的摩擦影響試驗結(jié)果,設(shè)置“墻體”–顆粒之間的摩擦因數(shù)和顆粒–顆粒之間的摩擦因數(shù)一致。然后給顆粒施加重力,使顆粒能夠在自重作用下自由堆放,直到達到最終的平衡狀態(tài),如圖2(b)所示。最后測量自然休止角度(本文休止角的測量是將平衡狀態(tài)圖導(dǎo)入到CAD中進行的)。使用上述方法建立的顆粒堆積試驗PFC2D模型的基本控制參數(shù)見表2。粒間摩擦因數(shù)的取值,fric=0.70是基于I.R.Bezuijen中的試驗數(shù)據(jù)標定所得,fric=1.00,0.55是為了探討粒間摩擦因數(shù)的變化對宏觀力學特性的影響而增減得到。3.2試驗結(jié)果及討論為得到顆粒形狀、粒間摩擦因數(shù)對顆粒堆積試驗數(shù)據(jù)的影響,分別選用圓形、類橢圓形、類正方形和類三角形4種不同形狀顆粒組,各個形狀顆粒組又分別選用摩擦因數(shù)為fric=1.00,0.70,0.55的值進行模擬。圖3為圓形顆粒組在fric=0.70時,堆積試驗平衡結(jié)束后的示意圖,圖中2個圓圈是PFC2D中用來監(jiān)測該位置的平均配位數(shù)、平均孔隙率等參數(shù)而設(shè)置的。本文孔隙率的測量就用到軟件的這一功能,孔隙率的定義為(假設(shè)為單位厚度):n=(監(jiān)測環(huán)內(nèi)孔隙面積×1)/(監(jiān)測環(huán)面積×1)?,F(xiàn)將試驗結(jié)果列于表3。由表3可知,摩擦因數(shù)與顆粒形狀都對材料的內(nèi)摩擦角存在影響,自然休止角隨著顆粒間摩擦因數(shù)的降低而降低,但其與顆粒形狀變化的規(guī)律性不強。另外,天然孔隙率(指僅在自重作用下平衡后的孔隙率)的值有隨形狀系數(shù)的減小而增大,隨摩擦因數(shù)的增大而增大的趨勢。對此的解釋為:(1)隨著顆粒摩擦因數(shù)的增大,顆粒之間微觀咬合增強,顆粒移動需要克服相互間的阻力加大,導(dǎo)致顆粒沉降的速率減小,進而最終影響平衡狀態(tài)的天然孔隙率的大小。(2)隨著顆粒形狀系數(shù)的增大,顆粒變得越來越不規(guī)則,在自重作用下,顆粒自身的轉(zhuǎn)動受到的阻力增大,也更容易與別的顆粒形成拱架結(jié)構(gòu)(見圖4),最終導(dǎo)致孔隙率的增大。4雙軸試驗4.1雙軸試驗?zāi)P蛨D5為雙軸試驗?zāi)P褪疽鈭D。其試驗過程為:(1)在指定的四面墻體內(nèi)生成一定數(shù)目的顆粒,顆粒分布方式可選均勻分布和高斯分布2種;(2)通過擴大顆粒的半徑達到預(yù)定孔隙率;(3)移動四面墻體使顆粒組達到初始應(yīng)力平衡狀態(tài),在其過程中,孔隙率的變化較小,可以認為大致等于預(yù)定孔隙率;(4)指定上、下墻體的速度,模擬雙軸加載過程,并通過伺服控制系統(tǒng),通過移動左、右墻體保證圍壓恒定。本試驗基于I.R.Bezuijen中附錄的試驗數(shù)據(jù),給出了雙軸試驗?zāi)P突究刂茀?shù)(見表4)。模型的高度為9.45cm,模型寬度為3.77cm,初始應(yīng)力設(shè)為100kPa,顆粒接觸模型選用線性接觸剛度模型。2種試驗宏觀參數(shù)見表5(由模型試驗數(shù)據(jù)獲取材料宏觀力學特性的方法,在I.R.Bezuijen中已有詳細介紹,本文雙軸試驗的宏觀特性參數(shù)采用其介紹的方法)。由表5可知,所選取的模型參數(shù)能夠正確模擬真實試驗過程。4.2宏觀特性參數(shù)以表4的模型控制參數(shù)為基礎(chǔ),改變顆粒的輪廓特征,選取圓形(F=1.00)與類橢圓形(F=0.91)、類正方形(F=0.82)、類三角形(F=0.78)3種異形顆粒作雙軸加載。圖6為PFC2D雙軸試驗偏應(yīng)力–軸向應(yīng)變關(guān)系曲線,其中圓形顆粒應(yīng)力–應(yīng)變曲線與室內(nèi)試驗曲線吻合得較好(因用圓形顆粒標定微觀參數(shù))。由圖6可知,砂土的峰值強度隨著形狀系數(shù)的減小而增大。對此解釋為:顆粒形狀愈不規(guī)則,顆粒間咬合作用愈明顯,顆粒移動需要克服的阻力也越大,導(dǎo)致顆粒組的強度提高。隨著形狀系數(shù)的減小,材料的軟化效應(yīng)也愈加明顯,這可能是由于材料越不規(guī)則,在剪切過程中,顆粒之間相互翻滾與攀爬得更加厲害,在越過峰值應(yīng)力后,應(yīng)力軟化也就更加厲害。峰值強度–形狀系數(shù)關(guān)系曲線如圖7所示,其關(guān)系可由下式擬合得到:式中:qmax為材料峰值強度。4種試驗樣品的宏觀特性參數(shù)列于表6,由表可以看出,顆粒的形狀對樣品的初始彈性模量、剪脹角以及泊松比都存在影響,但與顆粒形狀系數(shù)關(guān)系的規(guī)律性不明顯。顆粒組的內(nèi)摩擦角隨著顆粒形狀系數(shù)的減小而增大。內(nèi)摩擦角反映的是材料的摩擦特性與抗剪強度,亦即顆粒形狀愈不規(guī)則,顆粒之間的摩阻效應(yīng)愈明顯,相同法向應(yīng)力下,材料破壞所需要的切應(yīng)力就愈大,也就導(dǎo)致材料的抗剪強度的增大。5直接切割試驗5.1近似剪切強度測定圖8為PFC2D直剪試驗?zāi)P蛨D,1,2,6,7墻構(gòu)成直剪試驗的下盒,3,4,5,8墻構(gòu)成直剪試驗的上盒。試驗中,通過指定2,6,7墻的速度,使下盒朝右運動,上盒固定不動來模擬剪切過程。且通過伺服控制,移動1,3墻的速度來保證上、下圍壓恒定。記錄6墻的水平受力和水平位移,將6墻水平方向的峰值應(yīng)力作為該法向應(yīng)力下的近似剪切強度值。試驗?zāi)P椭猩稀⑾潞械母叨群蛯挾榷挤謩e取為1.885和9.450cm,其他控制參數(shù)參見表4,法向應(yīng)力選取100,200,300,400kPa四組。5.2剪切面為接枝面上的大變形圖9為圓形顆粒直剪試驗的剪切破壞圖,從圖中可以看出,大變形僅發(fā)生在固定剪切面附近的一個條帶內(nèi),條帶以外形狀基本未發(fā)生變化,并且剪切盒兩端條帶的變形要遠遠大于中間條帶的變形。(1)加剪應(yīng)力后的下剪切方向?qū)佑|力的影響圖10為法向應(yīng)力取為200kPa,剪切位移為3mm時,圓形顆粒與類三角形顆粒剪切試驗接觸力對比圖,從圖中可以看出,加剪應(yīng)力τ后,主應(yīng)力的方向產(chǎn)生偏轉(zhuǎn),在偏向主應(yīng)力方向,形成了幾條主要的斜向接觸力鏈。在上剪切盒的左邊和下剪切盒的右邊顆粒接觸力很小。從主接觸力鏈的數(shù)目來看,三角形顆粒組比圓形顆粒組明顯要少,意味著隨著顆粒形狀的不均勻,主應(yīng)力在更少的顆粒間傳遞,這些顆粒承受更大的應(yīng)力,在實際中會更容易導(dǎo)致顆粒的破碎。(2)下剪切盒顆粒的速度圖11為法向應(yīng)力取為200kPa,剪切位移為3mm時,圓形顆粒與三角形顆粒剪切試驗速度場對比圖,從圖中可以看出,由于剪切盒的下盒是按指定速度向右運動,上剪切盒固定不動,以剪切帶為分界,下剪切盒顆粒的速度明顯大于上剪切盒顆粒的速度。但由于顆粒的相互接觸,上剪切盒顆粒也不是固定不動的。此外,三角形顆粒的速度場比圓形顆粒的速度場分布得更加不均勻,由于顆粒的不規(guī)則,剪切過程中顆粒旋轉(zhuǎn)的可能性更大,形成的渦狀速度場更多,在剪切帶附近,顆粒旋轉(zhuǎn)向上的趨勢更加明顯。(3)圍壓對顆粒形狀對抗剪強度的影響對于圓形顆粒組,在法向應(yīng)力分別為100,200,300,400kPa時,測得剪應(yīng)力–剪切位移關(guān)系曲線(見圖12)。將各法向應(yīng)力對應(yīng)的剪應(yīng)力峰值作為該法向應(yīng)力時材料的抗剪強度τf,可以繪制材料的抗剪強度曲線,即莫爾–庫侖破壞包線(見圖13)。由圖12可知,隨著圍壓的增加,顆粒材料的剪切強度在提高,也說明用PFC2D對剪切試驗的模擬是可行的,可以反映材料的剪切試驗過程。從圖13可以看出,顆粒形狀對土體的抗剪強度影響較大。本文模擬的對象為類砂土,它的抗剪強度來自粗糙接觸面引起的滑動摩擦和由相鄰顆粒對移動的約束引起的咬合摩擦,圓形顆粒組的抗剪強度曲線與τ軸的交點大致在0點,說明材料的黏聚力近似為0。而對其他形狀的顆粒材料,由于顆粒形狀的不規(guī)則,相互之間的咬合作用更強,雖然在顆粒之間沒有黏聚力,但當用直線處理它的抗剪強度包線時仍有相當大的縱截距,以黏聚強度的形式表現(xiàn)出來。所以這些非圓形顆粒的抗剪強度曲線與τ軸沒有交于0點,具有一定的黏聚力。6顆粒形狀的定義與土體微觀結(jié)構(gòu)的測量相結(jié)合(1)上述試驗中顆粒都是采用單位厚度的圓盤或通過圓盤的黏結(jié)來模擬的,這與實際情況有差距。實際土體的變形很復(fù)雜,伴隨著有顆粒膠結(jié)的破壞,顆粒的壓碎等現(xiàn)象的發(fā)生。對顆粒形狀的模擬有學者用可實現(xiàn)破碎的cluster命令來生成,也有學者采用不可破碎的clump命令來生成,到底采用哪種顆粒與實際情況更符合,作者認為這要根據(jù)研究的對象而定。本文采用第二種顆粒生成方法,探討顆粒輪廓特征與顆粒間摩擦因數(shù)這2個參數(shù)對試驗結(jié)果的影響。(2)將顆粒形狀系數(shù)的定義與顆粒變形過程相聯(lián)系,而不是單獨從數(shù)學描述的角度來考慮是值得深入探討的問題。借助于離散元軟件,觀測并記錄變形中顆粒自轉(zhuǎn)和平移的分量,探討顆粒形狀系數(shù)的合理定義與顆粒運動的聯(lián)系也是有意義

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論