![2023年江蘇省南京市高職分類數(shù)學(xué)自考預(yù)測(cè)試題三(含答案)_第1頁](http://file4.renrendoc.com/view/2771a7cb827d09ab301330e6b19dc4f9/2771a7cb827d09ab301330e6b19dc4f91.gif)
![2023年江蘇省南京市高職分類數(shù)學(xué)自考預(yù)測(cè)試題三(含答案)_第2頁](http://file4.renrendoc.com/view/2771a7cb827d09ab301330e6b19dc4f9/2771a7cb827d09ab301330e6b19dc4f92.gif)
![2023年江蘇省南京市高職分類數(shù)學(xué)自考預(yù)測(cè)試題三(含答案)_第3頁](http://file4.renrendoc.com/view/2771a7cb827d09ab301330e6b19dc4f9/2771a7cb827d09ab301330e6b19dc4f93.gif)
![2023年江蘇省南京市高職分類數(shù)學(xué)自考預(yù)測(cè)試題三(含答案)_第4頁](http://file4.renrendoc.com/view/2771a7cb827d09ab301330e6b19dc4f9/2771a7cb827d09ab301330e6b19dc4f94.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年江蘇省南京市高職分類數(shù)學(xué)自考預(yù)測(cè)試題三(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(10題)1.若直線x+y=0與直線ax-2y+1=0互相垂直,則a的值為()
A.-2B.2C.-1D.1
2.在(0,+∞)內(nèi),下列函數(shù)是增函數(shù)的是()
A.y=sinxB.y=1/xC.y=x2D.y=3-x
3.已知過點(diǎn)A(a,2),和B(2,5)的直線與直線x+y+4=0垂直,則a的值為()
A.?2B.?2C.1D.2
4.函數(shù)y=x3?x在x=1處的導(dǎo)數(shù)是()
A.2B.3C.4D.5
5.下列函數(shù)中既是奇函數(shù)又是增函數(shù)的是()
A.y=2xB.y=2xC.y=x2/2D.y=-x/3
6.下列冪函數(shù)中過點(diǎn)(0,0),(1,1)的偶函數(shù)是()
A.y=x^(1/2)B.y=x^4C.y=x^(-2)D.y=x^(1/3)
7.函數(shù)y=2x-1的反函數(shù)為g(x),則g(-3)=()
A.-1B.9C.1D.-9
8.傾斜角為60°,且在y軸上截距為?3的直線方程是()
A.√3x-y+3=0B.√3x-y-3=0C.3x-√y+3=0D.x-√3y-3=0
9.不等式|x2-2|<2的解集是()
A.(-1,1)B.(-2,2)C.(-1,0)∪(0,1)D.(-2,0)∪(0,2)
10.過點(diǎn)A(-1,1)且與直線l:x-2y+6=0垂直的直線方程為()
A.2x-y-1=0B.x-2y-1=0C.x+2y+1=0D.2x+y+1=0
二、填空題(4題)11.已知向量a=(1/2,cosα),b=(-√3/2,sinα),且a⊥b,則sinα=______。
12.已知平面向量a=(1,2),=(一2,1),則a與b的夾角是________。
13.已知直線kx-y-1=0與直線x+2y=0互相平行,則k=_____。
14.以點(diǎn)M(3,1)為圓心的圓與x軸相交于A,B兩點(diǎn)若??MAB為直角三角形、則該圓的標(biāo)準(zhǔn)方程為________。
三、計(jì)算題(2題)15.已知三個(gè)數(shù)成等差數(shù)列,它們的和為9,若第三個(gè)數(shù)加上4后,新的三個(gè)數(shù)成等比數(shù)列,求原來的三個(gè)數(shù)。
16.某社區(qū)從4男3女選2人做核酸檢測(cè)志愿者,選中一男一女的概率是________。
參考答案
1.B
2.C
3.B
4.A
5.Ay=2x既是增函數(shù)又是奇函數(shù);y=1/x既是減函數(shù)又是奇函數(shù);y=1/2x2是偶函數(shù),且在(-∞,0)上為減函數(shù),在[0,+∞)上為增函數(shù);y=-x/3既是減函數(shù)又是奇函數(shù),故選A.考點(diǎn):函數(shù)的奇偶性.感悟提高:對(duì)常見的一次函數(shù)、二次函數(shù)、反比例函數(shù),可根據(jù)圖像的特點(diǎn)判斷其單調(diào)性;對(duì)于函數(shù)的奇偶性,則可依據(jù)其定義來判斷。首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,如果定義域不關(guān)于原點(diǎn)對(duì)稱,則函數(shù)不具有奇偶性;如果定義域關(guān)于原點(diǎn)對(duì)稱,再判斷f(-x)=f(x)(偶函數(shù));f(-x)=-f(x)(奇函數(shù))
6.B[解析]講解:函數(shù)圖像的考察,首先驗(yàn)證是否過兩點(diǎn),C定義域不含x=0,因?yàn)榉帜赣凶宰兞?,然后?yàn)證偶函數(shù),A選項(xiàng)定義域沒有關(guān)于原點(diǎn)對(duì)稱,D選項(xiàng)可以驗(yàn)證是奇函數(shù),答案選B。
7.A
8.B
9.D[解析]講解:絕對(duì)值不等式的求解,-2<x2-2<2,故0<x2
10.D
11.√3/2
12.90°
13.-1/2
14.(x-3)2+(y-1)2=2
15.解:設(shè)原來三個(gè)數(shù)為a-d,a,a+d,則(a-d)+a+(a+d)=9所以3a=9,a=3因?yàn)槿齻€(gè)數(shù)為3-d,3,3+d又因?yàn)?-d,3,7+d成等比數(shù)列所以(3-d)(7+d)=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 寒假安全教育主題班會(huì)方案8篇
- 形勢(shì)任務(wù)教育心得體會(huì)
- 開學(xué)典禮副校長(zhǎng)講話稿15篇
- 招商引資差旅費(fèi)管理辦法
- 中國分布式光纖傳感器行業(yè)發(fā)展現(xiàn)狀及市場(chǎng)前景分析預(yù)測(cè)報(bào)告
- 湖南省溆浦一中普通高中學(xué)業(yè)水平考試模擬試卷語文試題(含答案)
- Massive MIMO系統(tǒng)低復(fù)雜度混合預(yù)編碼方法研究
- 2025版銷售經(jīng)理多元化市場(chǎng)拓展聘用合同模板3篇
- 志愿培訓(xùn)教材
- 應(yīng)急管理法規(guī)與政策解讀
- 《openEuler操作系統(tǒng)》考試復(fù)習(xí)題庫(含答案)
- 《天潤(rùn)乳業(yè)營(yíng)運(yùn)能力及風(fēng)險(xiǎn)管理問題及完善對(duì)策(7900字論文)》
- 醫(yī)院醫(yī)學(xué)倫理委員會(huì)章程
- xx單位政務(wù)云商用密碼應(yīng)用方案V2.0
- 北師大版五年級(jí)上冊(cè)數(shù)學(xué)期末測(cè)試卷及答案共5套
- 2024-2025學(xué)年人教版生物八年級(jí)上冊(cè)期末綜合測(cè)試卷
- 2025年九省聯(lián)考新高考 語文試卷(含答案解析)
- 全過程工程咨詢投標(biāo)方案(技術(shù)方案)
- 心理健康教育學(xué)情分析報(bào)告
- 農(nóng)民專業(yè)合作社財(cái)務(wù)報(bào)表(三張報(bào)表)
- 安宮牛黃丸的培訓(xùn)
評(píng)論
0/150
提交評(píng)論