山東省曹縣三桐中學年2024屆數(shù)學高二上期末統(tǒng)考試題含解析_第1頁
山東省曹縣三桐中學年2024屆數(shù)學高二上期末統(tǒng)考試題含解析_第2頁
山東省曹縣三桐中學年2024屆數(shù)學高二上期末統(tǒng)考試題含解析_第3頁
山東省曹縣三桐中學年2024屆數(shù)學高二上期末統(tǒng)考試題含解析_第4頁
山東省曹縣三桐中學年2024屆數(shù)學高二上期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省曹縣三桐中學年2024屆數(shù)學高二上期末統(tǒng)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間直角坐標系中,,,若∥,則x的值為()A.3 B.6C.5 D.42.方程表示的曲線是()A.一個橢圓和一條直線 B.一個橢圓和一條射線C.一條射線 D.一個橢圓3.已知兩條平行直線:與:間的距離為3,則()A.25或-5 B.25C.5 D.21或-94.已知平面直角坐標系內一動點P,滿足圓上存在一點Q使得,則所有滿足條件的點P構成圖形的面積為()A. B.C. D.5.橢圓以坐標軸為對稱軸,經(jīng)過點,且長軸長是短軸長的倍,則橢圓的標準方程為()A. B.C.或 D.或6.若,,則有()A. B.C. D.7.已知圓O的半徑為5,,過點P的2021條弦的長度組成一個等差數(shù)列,最短弦長為,最長弦長為,則其公差為()A. B.C. D.8.在等差數(shù)列中,,,則數(shù)列的公差為()A.1 B.2C.3 D.49.若函數(shù)的導函數(shù)在區(qū)間上是減函數(shù),則函數(shù)在區(qū)間上的圖象可能是()A. B.C. D.10.已知雙曲線的焦距為,且雙曲線的一條漸近線與直線平行,則雙曲線的方程為()A. B.C. D.11.函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是()A. B.C. D.12.直線的傾斜角的大小為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在長方體ABCD﹣A'B'C'D'中,點P,Q分別是棱BC,CD上的動點,BC=4,CD=3,CC'=2,直線CC'與平面PQC'所成的角為30°,則△PQC'的面積的最小值是__14.已知是首項為,公差為1的等差數(shù)列,數(shù)列滿足,若對任意的,都有成立,則實數(shù)的取值范圍是________15.在某項測量中,測量結果ξ服從正態(tài)分布(),若ξ在內取值的概率為0.4,則ξ在內取值的概率為______16.若是直線外一點,為線段的中點,,,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.(1)求橢圓C的標準方程;(2)設斜率為k的直線與橢圓C交于兩點,O為坐標原點,若的面積為定值,判斷是否為定值,如果是,求出該定值;如果不是,說明理由.18.(12分)已知.(1)當,時,求中含項的系數(shù);(2)用、表示,寫出推理過程19.(12分)已知為各項均為正數(shù)的等比數(shù)列,且,(1)求數(shù)列的通項公式;(2)令,求數(shù)列前n項和20.(12分)如圖,正方形和四邊形所在的平面互相垂直,.(1)求證:平面;(2)求平面與平面的夾角.21.(12分)某高中招聘教師,首先要對應聘者的簡歷進行篩選,簡歷達標者進入面試,面試環(huán)節(jié)應聘者要回答3道題,第一題為教育心理學知識,答對得4分,答錯得0分,后兩題為學科專業(yè)知識,每道題答對得3分,答錯得0分(1)甲、乙、丙、丁、戊來應聘,他們中僅有3人的簡歷達標,若從這5人中隨機抽取3人,求這3人中恰有2人簡歷達標的概率;(2)某進入面試的應聘者第一題答對的概率為,后兩題答對的概率均為,每道題答對與否互不影響,求該應聘者的面試成績X的分布列及數(shù)學期望22.(10分)在2016珠海航展志愿服務開始前,團珠海市委調查了北京師范大學珠海分校某班50名志愿者參加志愿服務禮儀培訓和賽會應急救援培訓的情況,數(shù)據(jù)如下表:單位:人參加志愿服務禮儀培訓未參加志愿服務禮儀培訓參加賽會應急救援培訓88未參加賽會應急救援培訓430(1)從該班隨機選1名同學,求該同學至少參加上述一個培訓的概率;(2)在既參加志愿服務禮儀培訓又參加賽會應急救援培訓的8名同學中,有5名男同學A,A,A,A,A名女同學B,B,B現(xiàn)從這5名男同學和3名女同學中各隨機選1人,求A被選中且B未被選中的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】依題意可得,即可得到方程組,解得即可;【詳解】解:依題意,即,所以,解得故選:D2、A【解析】根據(jù)題意得到或,即可求解.【詳解】由方程,可得或,即或,所以方程表示的曲線為一個橢圓或一條直線.故選:A.3、A【解析】根據(jù)平行直線的性質,結合平行線間距離公式進行求解即可.【詳解】因為直線:與:平行,所以有,因為兩條平行直線:與:間距離為3,所以,或,當時,;當時,,故選:A4、D【解析】先找臨界情況當PQ與圓C相切時,,進而可得滿足條件的點P形成的圖形為大圓(包括內部),即求.【詳解】當PQ與圓C相切時,,這種情況為臨界情況,當P往外時無法找到點Q使,當P往里時,可以找到Q使,故滿足條件的點P形成的圖形為大圓(包括內部),如圖,由圓,可知圓心,半徑為1,則大圓的半徑為,∴所有滿足條件的點P構成圖形的面積為.故選:D.【點睛】關鍵點點睛:本題的關鍵是找出臨界情況時點所滿足的條件,進而即可得到動點滿足條件的圖形,問題即可解決.5、C【解析】分情況討論焦點所在位置及橢圓方程.【詳解】當橢圓的焦點在軸上時,由題意過點,故,,橢圓方程為,當橢圓焦點在軸上時,,,橢圓方程為,故選:C.6、D【解析】對待比較的代數(shù)式進行作差,利用不等式基本性質,即可判斷大小.【詳解】因為,又,,故,則,即;因為,又,,故,則;綜上所述:.故選:D.7、B【解析】可得過點P的最長弦長為直徑,最短弦長為過點P的與垂直的弦,分別求出即可得出公差.【詳解】可得過點P的最長弦長為直徑,,最短弦長為過點P的與垂直的弦,,公差.故選:B.8、B【解析】將已知條件轉化為的形式,由此求得.【詳解】在等差數(shù)列中,設公差為d,由,,得,解得.故選:B9、A【解析】根據(jù)導數(shù)概念和幾何意義判斷【詳解】由題意得,圖象上某點處的切線斜率隨增大而減小,滿足要求的只有A故選:A10、B【解析】根據(jù)焦點在x軸上的雙曲線漸近線斜率為±可求a,b關系,再結合a,b,c關系即可求解﹒【詳解】∵雙曲線1(a>0,b>0)的焦距為2,且雙曲線的一條漸近線與直線2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴雙曲線的方程為故選:B11、B【解析】方程有兩個根,轉化為求函數(shù)的單調性與極值【詳解】函數(shù)定義域是,有兩個零點,即有兩個不等實根,即有兩個不等實根設,則,時,,遞減,時,,遞增,極小值=,而時,,時,,所以故選:B12、B【解析】由直線方程,可知直線的斜率,設直線的傾斜角為,則,又,所以,故選二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】設三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由體積法求得的關系,由直線CC’與平面C’PQ成的角為30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面積的最小值【詳解】解:設三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由長方體性質知兩兩垂直,所以,,,,,所以,由得,所以,∵直線CC’與平面C’PQ成的角為30°,∴h=2,∴,,∴xy≥8,再由體積可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面積的最小值是8故答案為:814、【解析】先求得,再得出,對于任意的,都有成立,說明是中的最小項【詳解】由題意,∴,易知函數(shù)在和上都是減函數(shù),且時,,即,時,,,由題意對于任意的,都有成立,則是最小項,∴,解得,故答案為:15、4##【解析】根據(jù)正態(tài)分布曲線的對稱性求解【詳解】因為ξ服從正態(tài)分布(),即正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,可知ξ在與取值的概率相同,所以ξ在內取值的概率為0.4.故答案為:0.416、【解析】根據(jù)題意得到,進而得到,求得的值,即可求解.【詳解】因為為線段的中點,所以,所以,又因為,所以,所以故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)是定值,定值為6【解析】(1)根據(jù)題意條件,可直接求出的值,然后再利用條件中、的關系,借助即可求解出、的值,從而得到橢圓方程;(2)根據(jù)已知條件設出、所在直線方程,然后與橢圓聯(lián)立方程,分別表示出根與系數(shù)的關系,再表示出弦長關系,再計算點到直線的距離,把面積用和的式子表示出來,通過給出的面積的值,找到和的等量關系,將等量關系帶入到利用跟與系數(shù)關系組合成的中即可得到答案.【小問1詳解】由題意:,由知:,故橢圓C的標準方程為,【小問2詳解】設:,①橢圓.②聯(lián)立①②得:,,即∴,O到直線l的距離,∴,∴,即,∴.故為定值6.18、(1)(2),過程見解析【解析】(1)寫出函數(shù)的解析式,利用二項式定理可求得函數(shù)中含項的系數(shù);(2)利用錯位相減法化簡函數(shù)的解析式,求出解析式中含項的系數(shù),再結合組合數(shù)公式化簡可得結果.【小問1詳解】解:當,時,,的展開式通項為,此時,函數(shù)中含項的系數(shù)之和為.【小問2詳解】解:因為,①則,②①②得,所以,,而為中含項的系數(shù),而函數(shù)中含項的系數(shù)也可視為中含項的系數(shù),故,且,故.19、(1)(2)【解析】(1)利用基本量法,求出首項和公比,即可求解.(2)利用錯位相減法,即可求解.【小問1詳解】設等比數(shù)列公比為【小問2詳解】20、(1)證明見解析(2)【解析】(1)由題意可證得,所以以C為坐標原點,所在直線分別為x軸,y軸,z軸建立空間直角坐標系,利用空間向量證明,(2)求出兩個平面的法向量,利用空間向量求解【小問1詳解】∵平面平面,平面平面,∴平面,∴,以C為坐標原點,所在直線分別為x軸,y軸,z軸建立空間直角坐標系,則,.設平面的法向量為,則,令,則,∵平面,∴∥平面.【小問2詳解】,設平面的法向量為,則,令,則.∴.由圖可知平面與平面的夾角為銳角,所以平面與平面的夾角為.21、(1)(2)分布列見解析;期望為【解析】(1)根據(jù)古典概型的概率公式即可求出;(2)根據(jù)題意可知,隨機變量X的所有可能取值為0,3,4,6,7,10,再利用相互獨立事件的概率乘法公式分別求出對應的概率,列出分布列即可求出數(shù)學期望【小問1詳解】從這5人中隨機抽取3人,恰有2人簡歷達標的概率為【小問2詳解】由題可知,X的所有可能取值為0,3,4,6,7,10,則,,,,,.故X的分布列為:X0346710P所以22、(1);(2).【解析】(1)根據(jù)表中數(shù)據(jù)知未參加志愿服務禮儀培訓又未參加賽會應急救援培訓的有30人,故至少參加上述一個培訓的共有人.從而求得概率;(2)從這5名男同學

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論