青海省海東市平安區(qū)海東二中2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第1頁
青海省海東市平安區(qū)海東二中2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第2頁
青海省海東市平安區(qū)海東二中2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第3頁
青海省海東市平安區(qū)海東二中2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第4頁
青海省海東市平安區(qū)海東二中2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

青海省海東市平安區(qū)海東二中2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,已知雙曲線的左右焦點分別為、,,是雙曲線右支上的一點,,直線與軸交于點,的內(nèi)切圓半徑為,則雙曲線的離心率是()A. B.C. D.2.設(shè)是等差數(shù)列的前n項和,若,,則()A.26 B.-7C.-10 D.-133.已知等比數(shù)列滿足,,則數(shù)列前6項的和()A.510 B.126C.256 D.5124.已知函數(shù),則曲線在點處的切線與坐標軸圍成的三角形的面積是()A B.C. D.5.若函數(shù),(其中,)的最小正周期是,且,則()A. B.C. D.6.直線的傾斜角的大小為()A. B.C. D.7.已知函數(shù)(其中)的部分圖像如圖所示,則函數(shù)的解析式為()A. B.C. D.8.若(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.執(zhí)行如圖所示的程序框圖,若輸入的的值為3,則輸出的的值為()A.3 B.6C.9 D.1210.已知橢圓的上下頂點分別為,一束光線從橢圓左焦點射出,經(jīng)過反射后與橢圓交于點,則直線的斜率為()A. B.C. D.11.已知,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件12.若離散型隨機變量的所有可能取值為1,2,3,…,n,且取每一個值的概率相同,若,則n的值為()A.4 B.6C.9 D.10二、填空題:本題共4小題,每小題5分,共20分。13.在不等邊△ABC(三邊均不相等)中,三個內(nèi)角A,B,C所對的邊分別為a,b,c,且有,則角C的大小為________14.已知曲線在點處的切線的斜率為,則______15.設(shè)與是定義在同一區(qū)間上的兩個函數(shù),若函數(shù)在上有兩個不同的零點,則稱與在上是“關(guān)聯(lián)函數(shù)”.若與在上是“關(guān)聯(lián)函數(shù)”,則實數(shù)的取值范圍是____________.16.若兩平行直線3x-2y-1=0,6x+ay+c=0之間的距離為,則的值為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)有兩位射擊運動員在一次射擊測試中各射靶7次,每次命中的環(huán)數(shù)如下:甲6978856乙a398964經(jīng)計算可得甲、乙兩名射擊運動員的平均成績是一樣的(1)求實數(shù)a的值;(2)請通過計算,判斷甲、乙兩名射擊運動員哪一位的成績更穩(wěn)定?18.(12分)已知圓,直線(1)求證:對,直線l與圓C總有兩個不同交點;(2)當時,求直線l被圓C截得的弦長19.(12分)在數(shù)列中,,且,(1)求的通項公式;(2)求的前n項和的最大值20.(12分)已知數(shù)列滿足(1)證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和21.(12分)設(shè)命題方程表示中心在原點,焦點在坐標軸上的雙曲線;命題,,若“”為假命題,“”為真命題,求實數(shù)的取值范圍.22.(10分)已知橢圓的上下兩個焦點分別為,,過點與y軸垂直的直線交橢圓C于M,N兩點,△的面積為,橢圓C的離心率為(1)求橢圓C的標準方程;(2)已知O為坐標原點,直線與y軸交于點P,與橢圓C交于A,B兩個不同的點,若存在實數(shù),使得,求m的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)給定條件結(jié)合直角三角形內(nèi)切圓半徑與邊長的關(guān)系求出雙曲線實半軸長a,再利用離心率公式計算作答.【詳解】依題意,,的內(nèi)切圓半徑,由直角三角形內(nèi)切圓性質(zhì)知:,由雙曲線對稱性知,,于是得,即,又雙曲線半焦距c=2,所以雙曲線的離心率.故選:D【點睛】結(jié)論點睛:二直角邊長為a,b,斜邊長為c的直角三角形內(nèi)切圓半徑.2、C【解析】直接利用等差數(shù)列通項和求和公式計算得到答案.【詳解】,,解得,故.故選:C.3、B【解析】設(shè)等比數(shù)列的公比為,由題設(shè)條件,求得,再結(jié)合等比數(shù)列的求和公式,即可求解.【詳解】設(shè)等比數(shù)列的公比為,因為,,可得,解得,所以數(shù)列前6項的和.故選:B.【點睛】本題主要考查了等比數(shù)列的通項公式,以及等比數(shù)列的前項和公式的應(yīng)用,其中解答中熟記等比數(shù)列的通項公式和求和公式,準確計算是解答的關(guān)鍵,著重考查推理與運算能力.4、B【解析】根據(jù)導(dǎo)數(shù)的幾何意義,求出切線方程,求出切線和橫截距a和縱截距b,面積為【詳解】由題意可得,所以,則所求切線方程為令,得;令,得故所求三角形的面積為故選:B5、B【解析】利用余弦型函數(shù)的周期公式可求得的值,由結(jié)合的取值范圍可求得的值.【詳解】由已知可得,且,因此,.故選:B.6、B【解析】由直線方程,可知直線的斜率,設(shè)直線的傾斜角為,則,又,所以,故選7、B【解析】根據(jù)題圖有且,結(jié)合五點法求參數(shù),即可得的解析式.【詳解】由圖知:且,則,所以,則,即,又,可得,,則,,又,即有.綜上,.故選:B8、A【解析】根據(jù)復(fù)數(shù)運算法則求出z=a+bi形式,根據(jù)復(fù)數(shù)的幾何意義即可求解.【詳解】,z對應(yīng)的點在第一象限.故選:A9、A【解析】模擬執(zhí)行程序框圖,根據(jù)輸入數(shù)據(jù),即可求得輸出數(shù)據(jù).【詳解】當時,不滿足,故,即輸出的的值為.故選:.10、B【解析】根據(jù)給定條件借助橢圓的光學(xué)性質(zhì)求出直線AD的方程,進而求出點D的坐標計算作答.【詳解】依題意,橢圓的上頂點,下頂點,左焦點,右焦點,由橢圓的光學(xué)性質(zhì)知,反射光線AD必過右焦點,于是得直線AD的方程為:,由得點,則有,所以直線的斜率為.故選:B11、C【解析】根據(jù)充要條件的定義進行判斷【詳解】解:因為函數(shù)為增函數(shù),由,所以,故“”是“”的充分條件,由,所以,故“”是“”的必要條件,故“”是“”的充要條件故選:C12、D【解析】根據(jù)分布列即可求出【詳解】因為,所以故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由正弦定理可得,又,,,,,在三角形中,.考點:1正弦定理;2正弦的二倍角公式.14、【解析】對求導(dǎo),根據(jù)題設(shè)有且,即可得目標式的值.【詳解】由題設(shè),且定義域為,則,所以,整理得,又,所以,兩邊取對數(shù)有,得:,即.故答案為:.15、【解析】令得,設(shè)函數(shù),則直線與函數(shù)在區(qū)間上的圖象有兩個交點,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,利用數(shù)形結(jié)合思想可求得實數(shù)的取值范圍.【詳解】令得,設(shè)函數(shù),則直線與函數(shù)在區(qū)間上的圖象有兩個交點,,令,可得,列表如下:極小值,,如圖所示:由圖可知,當時,直線與函數(shù)在區(qū)間上的圖象有兩個交點,因此,實數(shù)的取值范圍是.故答案為:.16、±1【解析】由題意得=≠,∴a=-4且c≠-2,則6x+ay+c=0可化為3x-2y+=0,由兩平行線間的距離公式,得=,解得c=2或c=-6,∴=±1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)10;(2)甲的成績比乙更穩(wěn)定.【解析】(1)根據(jù)甲乙成績求他們的平均成績,由平均成績相等列方程求參數(shù)a的值.(2)由已知數(shù)據(jù)及(1)的結(jié)果,求甲乙的方差并比較大小,即可知哪位運動員成績更穩(wěn)定.【小問1詳解】由題意,甲的平均成績?yōu)椋业钠骄煽優(yōu)?,又甲、乙兩名射擊運動員的平均成績是一樣的,有,解得,故實數(shù)a為10;【小問2詳解】甲的方差,乙的方差,由,知:甲的成績比乙更穩(wěn)定.18、(1)證明見解析;(2).【解析】(1)由直線過定點,只需判斷定點在圓內(nèi)部,即可證結(jié)論.(2)由點線距離公式求弦心距,再利用半徑、弦心距、弦長的幾何關(guān)系求弦長即可.【小問1詳解】直線恒過定點,又,所以點在圓的內(nèi)部,所以直線與圓總有兩個不同的交點,得證.【小問2詳解】由題設(shè),,又的圓心為,半徑為,所以到直線的距離,所以所求弦長為19、(1)(2)40【解析】(1)根據(jù)遞推關(guān)系,判定數(shù)列是等差數(shù)列,然后求得首項和公差,進而得到通項公式;(2)令,求得,進而根據(jù)數(shù)列的前項和的意義求得當或5時,有最大值,進而求得和的最大值.【小問1詳解】解:∵數(shù)列滿足,∴,∴是等差數(shù)列,設(shè)的公差為d,則,即,解得,∴,∴【小問2詳解】令,得,解得,所以當或5時,有最大值,且最大值為20、(1)證明見解析,;(2).【解析】(1)由得是公差為2的等差數(shù)列,再由可得答案.(2),分為奇數(shù)、偶數(shù),分組求和即可求解.【小問1詳解】由,得,故是公差為2的等差數(shù)列,故,由,故,于是.【小問2詳解】依題意,,當為偶數(shù)時,故,當為奇數(shù)時,,綜上,.21、【解析】求出當命題、分別為真命題時實數(shù)的取值范圍,分析可知、中一真一假,分真假、假真兩種情況討論,求出對應(yīng)的實數(shù)的取值范圍,綜合可得結(jié)果.【詳解】解:若為真命題,則,即,解得,若為真命題,則,解得,因為“”為假命題,“”為真命題,則、中一真一假,若真假,則,可得,若假真,則,此時.綜上所述,實數(shù)的范圍為.22、(1);(2)或或.【解析】(1)根據(jù)已知條件,求得的方程組,解得,即可求得橢圓的方程;(2)對的取值進行分類討論,當時,根據(jù)三點共線求得,聯(lián)立直線方程和橢圓方程,利用韋達定理,結(jié)合直線交橢圓兩點,代值計算即可求得結(jié)果.【小問1詳解】對橢圓,令,故可得,則,故,則,又,,故可得,則橢圓的方程為:.【小問2詳解】直線與y軸交于點P,故可得的坐標為,當時,則,由橢圓的對稱性可知:,故滿足題意;當時,因為三點共線,若

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論