2022-2023學(xué)年廣東省高州市大井中學(xué)高考考前數(shù)學(xué)試題指導(dǎo)卷_第1頁
2022-2023學(xué)年廣東省高州市大井中學(xué)高考考前數(shù)學(xué)試題指導(dǎo)卷_第2頁
2022-2023學(xué)年廣東省高州市大井中學(xué)高考考前數(shù)學(xué)試題指導(dǎo)卷_第3頁
2022-2023學(xué)年廣東省高州市大井中學(xué)高考考前數(shù)學(xué)試題指導(dǎo)卷_第4頁
2022-2023學(xué)年廣東省高州市大井中學(xué)高考考前數(shù)學(xué)試題指導(dǎo)卷_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年廣東省高州市大井中學(xué)高考考前數(shù)學(xué)試題指導(dǎo)卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③2.已知,是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于,兩點,若,則△的內(nèi)切圓的半徑為()A. B. C. D.3.設(shè)為等差數(shù)列的前項和,若,,則的最小值為()A. B. C. D.4.已知函數(shù),則函數(shù)的零點所在區(qū)間為()A. B. C. D.5.設(shè)全集,集合,,則()A. B. C. D.6.某個小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進(jìn)行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.1407.設(shè)是定義域為的偶函數(shù),且在單調(diào)遞增,,則()A. B.C. D.8.已知底面為邊長為的正方形,側(cè)棱長為的直四棱柱中,是上底面上的動點.給出以下四個結(jié)論中,正確的個數(shù)是()①與點距離為的點形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.9.設(shè)集合,,若,則的取值范圍是()A. B. C. D.10.二項式的展開式中只有第六項的二項式系數(shù)最大,則展開式中的常數(shù)項是()A.180 B.90 C.45 D.36011.如圖所示,三國時代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機(jī)拋擲500顆米粒(米粒大小忽略不計,?。?,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.10812.已知定義在上的可導(dǎo)函數(shù)滿足,若是奇函數(shù),則不等式的解集是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.14.運(yùn)行下面的算法偽代碼,輸出的結(jié)果為_____.15.展開式的第5項的系數(shù)為_____.16.直線是曲線的一條切線為自然對數(shù)的底數(shù)),則實數(shù)__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.(1)求直線和圓的普通方程;(2)已知直線上一點,若直線與圓交于不同兩點,求的取值范圍.18.(12分)已知與有兩個不同的交點,其橫坐標(biāo)分別為().(1)求實數(shù)的取值范圍;(2)求證:.19.(12分)在數(shù)列和等比數(shù)列中,,,.(1)求數(shù)列及的通項公式;(2)若,求數(shù)列的前n項和.20.(12分)某百貨商店今年春節(jié)期間舉行促銷活動,規(guī)定消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商店經(jīng)理對春節(jié)前天參加抽獎活動的人數(shù)進(jìn)行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:123456758810141517(1)經(jīng)過進(jìn)一步統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(2)該商店規(guī)定:若抽中“一等獎”,可領(lǐng)取600元購物券;抽中“二等獎”可領(lǐng)取300元購物券;抽中“謝謝惠顧”,則沒有購物券.已知一次抽獎活動獲得“一等獎”的概率為,獲得“二等獎”的概率為.現(xiàn)有張、王兩位先生參與了本次活動,且他們是否中獎相互獨立,求此二人所獲購物券總金額的分布列及數(shù)學(xué)期望.參考公式:,,,.21.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.22.(10分)如圖,三棱柱中,平面,,,分別為,的中點.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.2、B【解析】

設(shè)左焦點的坐標(biāo),由AB的弦長可得a的值,進(jìn)而可得雙曲線的方程,及左右焦點的坐標(biāo),進(jìn)而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個三角形的面積之和可得內(nèi)切圓的半徑.【詳解】由雙曲線的方程可設(shè)左焦點,由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長為設(shè)內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【點睛】本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應(yīng)用,屬于中檔題.3、C【解析】

根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎(chǔ)題.4、A【解析】

首先求得時,的取值范圍.然后求得時,的單調(diào)性和零點,令,根據(jù)“時,的取值范圍”得到,利用零點存在性定理,求得函數(shù)的零點所在區(qū)間.【詳解】當(dāng)時,.當(dāng)時,為增函數(shù),且,則是唯一零點.由于“當(dāng)時,.”,所以令,得,因為,,所以函數(shù)的零點所在區(qū)間為.故選:A【點睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點,考查零點存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.5、D【解析】

求解不等式,得到集合A,B,利用交集、補(bǔ)集運(yùn)算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補(bǔ)集混合運(yùn)算,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.6、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C7、C【解析】

根據(jù)偶函數(shù)的性質(zhì),比較即可.【詳解】解:顯然,所以是定義域為的偶函數(shù),且在單調(diào)遞增,所以故選:C【點睛】本題考查對數(shù)的運(yùn)算及偶函數(shù)的性質(zhì),是基礎(chǔ)題.8、C【解析】

①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結(jié)論;②當(dāng)在(或時,與面所成角(或的正切值為最小,當(dāng)在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設(shè),,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【詳解】如圖:①錯誤,因為,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;②正確,因為面面,所以點必須在面對角線上運(yùn)動,當(dāng)在(或)時,與面所成角(或)的正切值為最?。橄碌酌婷鎸蔷€的交點),當(dāng)在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設(shè),則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當(dāng)且僅當(dāng)在時取等號.故選:.【點睛】本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點,綜合性強(qiáng),屬于難題.9、C【解析】

由得出,利用集合的包含關(guān)系可得出實數(shù)的取值范圍.【詳解】,且,,.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用集合的包含關(guān)系求參數(shù),考查計算能力,屬于基礎(chǔ)題.10、A【解析】試題分析:因為的展開式中只有第六項的二項式系數(shù)最大,所以,,令,則,.考點:1.二項式定理;2.組合數(shù)的計算.11、B【解析】

根據(jù)幾何概型的概率公式求出對應(yīng)面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長為1,則小直角三角形的邊長為,

則小正方形的邊長為,小正方形的面積,

則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,

故選:B.【點睛】本題主要考查幾何概型的概率的應(yīng)用,求出對應(yīng)的面積之比是解決本題的關(guān)鍵.12、A【解析】

構(gòu)造函數(shù),根據(jù)已知條件判斷出的單調(diào)性.根據(jù)是奇函數(shù),求得的值,由此化簡不等式求得不等式的解集.【詳解】構(gòu)造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當(dāng)時,,所以,所以.由得,所以,故不等式的解集為.故選:A【點睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),由橢圓和雙曲線的定義得到,根據(jù)是以為底邊的等腰三角形,得到,從而有,根據(jù),得到,再利用導(dǎo)數(shù)法求的范圍.【詳解】設(shè),由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:【點睛】本題主要考查橢圓,雙曲線的定義和幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.14、【解析】

模擬程序的運(yùn)行過程知該程序運(yùn)行后計算并輸出的值,用裂項相消法求和即可.【詳解】模擬程序的運(yùn)行過程知,該程序運(yùn)行后執(zhí)行:.故答案為:【點睛】本題考查算法語句中的循環(huán)語句和裂項相消法求和;掌握循環(huán)體執(zhí)行的次數(shù)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.15、70【解析】

根據(jù)二項式定理的通項公式,可得結(jié)果.【詳解】由題可知:第5項為故第5項的的系數(shù)為故答案為:70.【點睛】本題考查的是二項式定理,屬基礎(chǔ)題。16、【解析】

根據(jù)切線的斜率為,利用導(dǎo)數(shù)列方程,由此求得切點的坐標(biāo),進(jìn)而求得切線方程,通過對比系數(shù)求得的值.【詳解】,則,所以切點為,故切線為,即,故.故答案為:【點睛】本小題主要考查利用導(dǎo)數(shù)求解曲線的切線方程有關(guān)問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】分析:(1)用代入法消參數(shù)可得直線的普通方程,由公式可化極坐標(biāo)方程為直角坐標(biāo)方程;(2)把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,其中參數(shù)的絕對值表示直線上對應(yīng)點到的距離,因此有,,直接由韋達(dá)定理可得,注意到直線與圓相交,因此判別式>0,這樣可得滿足的不等關(guān)系,由此可求得的取值范圍.詳解:(1)直線的參數(shù)方程為,普通方程為,將代入圓的極坐標(biāo)方程中,可得圓的普通方程為,(2)解:直線的參數(shù)方程為代入圓的方程為可得:(*),且由題意,,.因為方程(*)有兩個不同的實根,所以,即,又,所以.因為,所以所以.點睛:(1)參數(shù)方程化為普通方程,一般用消參數(shù)法,而消參法有兩種選擇:一是代入法,二是用公式;(2)極坐標(biāo)方程與直角坐標(biāo)方程互化一般利用公式;(3)過的直線的參數(shù)方程為(為參數(shù))中參數(shù)具有幾何意義:直線上任一點對應(yīng)參數(shù),則.18、(1);(2)見解析【解析】

(1)利用導(dǎo)數(shù)研究的單調(diào)性,分析函數(shù)性質(zhì),數(shù)形結(jié)合,即得解;(2)構(gòu)造函數(shù),可證得:,,分析直線,與從左到右交點的橫坐標(biāo),在,處的切線即得解.【詳解】(1)設(shè)函數(shù),,令,令故在單調(diào)遞減,在單調(diào)遞增,∴,∵時;;時.(2)①過點,的直線為,則令,,,.②過點,的直線為,則,在上單調(diào)遞增.③設(shè)直線,與從左到右交點的橫坐標(biāo)依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點的橫坐標(biāo)依次為,.【點睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了學(xué)生數(shù)形結(jié)合,綜合分析,轉(zhuǎn)化劃歸,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于較難題.19、(1),(2)【解析】

(1)根據(jù)與可求得,再根據(jù)等比數(shù)列的基本量求解即可.(2)由(1)可得,再利用錯位相減求和即可.【詳解】解:(1)依題意,,設(shè)數(shù)列的公比為q,由,可知,由,得,又,則,故,又由,得.(2)依題意.,①則,②①-②得,即,故.【點睛】本題主要考查了等比數(shù)列的基本量求解以及錯位相減求和等.屬于中檔題.20、(1);(2)見解析【解析】試題分析:(I)由題意可得,,則,,關(guān)于的線性回歸方程為.(II)由題意可知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論