




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
FoundationsofMachineLearning
EnsembleLearning(集成學(xué)習(xí))Top10algorithmsindataminingC4.5K-MeansSVMAprioriEM(MaximumLikelihood)PageRankAdaBoostKNNNa?veBayesCARTEnsembleLearningIntroductionCommonlyusedensemblelearningalgorithmsBaggingRandomforestBoostingsklearn.ensemble:EnsembleMethods2023/11/4EnsembleLearningLesson7-3IntroductionSomeonewantstoinvestinacompanyXYZ.Heisnotsureaboutitsperformancethough.So,helooksfor
adviceonwhetherthestockpricewillincreasemorethan6%perannumornot?Hedecidestoapproachvarious
expertshavingdiversedomainexperience:
EmployeeofCompanyXYZ:
right70%times.FinancialAdvisorofCompanyXYZ:
right75%times.StockMarketTrader:
right70%times.Employeeofacompetitor:
right60%times.MarketResearchteaminsamesegment:
right75%times.SocialMediaExpert:
right65%times.2023/11/4EnsembleLearningLesson7-4IntroductionSomeonewantstoinvestinacompanyXYZ.Heisnotsureaboutitsperformancethough.So,helooksfor
adviceonwhetherthestockpricewillincreasemorethan6%perannumornot?Hedecidestoapproachvarious
expertshavingdiversedomainexperience:
Inascenariowhenallthe6experts/teamsverifythat
it’sagooddecision(assumingallthepredictionsareindependentofeachother),wewillgetacombinedaccuracyrateof:1-30%*25%*30%*40%*25%*35%=99.92125%2023/11/4EnsembleLearningLesson7-5DefinitionEnsemblelearningisamachinelearningparadigmwheremultiplelearnersaretrainedtosolvethesameproblem.Also,calledmulti-classifiersystem(多分類器系統(tǒng)),orcommittee-basedlearning(基于委員會(huì)的學(xué)習(xí)).Incontrasttoordinarymachinelearningapproacheswhichtrytolearnonehypothesisfromtrainingdata,ensemblemethodstrytoconstructasetofhypothesisandcombinethemtouse2023/11/4EnsembleLearningLesson7-6Definition2023/11/4EnsembleLearningLesson7-7DefinitionIndividuallearners(個(gè)體學(xué)習(xí)器)areanumberoflearnersusedinanensembleBaselearners(基學(xué)習(xí)器)theindividuallearnersthatareusuallygeneratedfromtrainingdatabyasinglebaselearningalgorithmtoproduceahomogeneousensemble.Componentlearners(組件學(xué)習(xí)器)theindividuallearnersthatareusuallygeneratedfromtrainingdatabymultiplelearningalgorithmtoproduceaheterogeneousensemble.2023/11/4EnsembleLearningLesson7-8DefinitionWeaklearnersOnlyslightlybetterthanrandomguessErrorRate:
<50%MosttheoreticalanalysesworkweaklearnersStronglearnersRendersclassificationofarbitraryaccuracyErrorRate:
isarbitrarilysmallEnsemblelearningisappealingbecausethatisabletoboostweaklearnerstostronglearnersBycombiningdiverseofweaklearners2023/11/4EnsembleLearningLesson7-9DefinitionEnsemblelearningisappealingbecausethatisabletoboostweaklearnerstostronglearnersBycombiningdiverseofweaklearners2023/11/4EnsembleLearningLesson7-10Ensemblelearningisprimarilyusedtoimprovethe(classification,prediction,functionapproximation,etc.)performanceofamodel,orreducethelikelihoodofanunfortunateselectionofapoorone.Otherapplicationsofensemblelearningincludeassigningaconfidencetothedecisionmadebythemodel,selectingoptimal(ornearoptimal)features,datafusion,incrementallearning,nonstationarylearninganderror-correcting.2023/11/4EnsembleLearningLesson7-11ScenariosforusingensemblelearningModelSelection--Whatisthemostappropriateclassifierforagivenclassificationproblem?whattypeofclassifiershouldbechosenamongmanycompetingmodels,suchas
multilayerperceptron
(MLP),
supportvectormachines
(SVM),
decisiontrees,
naiveBayesclassifier,etc;givenaparticularclassification
algorithm,whichrealizationofthisalgorithmshouldbechosen-forexample,differentinitializationsofMLPscangiverisetodifferentdecisionboundaries,evenifallotherparametersarekeptconstant.
2023/11/4EnsembleLearningLesson7-12ScenariosforusingensemblelearningToomuchortoolittledataWhentheamountoftrainingdataistoolargetomakeasingleclassifiertrainingdifficult,thedatacanbestrategicallypartitionedintosmallersubsets.Eachpartitioncanthenbeusedtotrainaseparateclassifierwhichcanthenbecombinedusinganappropriatecombinationrule.Whenthereistoolittledata,thenbootstrapping
canbeusedtotraindifferentclassifiersusingdifferentbootstrapsamples
ofthedata,whereeachbootstrapsampleisarandomsampleofthedatadrawnwithreplacementandtreatedasifitwasindependentlydrawnfromtheunderlyingdistribution.2023/11/4EnsembleLearningLesson7-13ScenariosforusingensemblelearningDivideandConquerCertainproblemsarejusttoodifficultforagivenclassifiertosolve.2023/11/4EnsembleLearningLesson7-14ScenariosforusingensemblelearningDataFusionInmanyapplicationsthatcallforautomateddecisionmaking,itisnotunusualtoreceivedataobtainedfromdifferentsourcesthatmayprovidecomplementaryinformation.Asuitablecombinationofsuchinformationisknownas
dataorinformationfusion,
andcanleadtoimprovedaccuracyoftheclassificationdecisioncomparedtoadecisionbasedonanyoftheindividualdatasourcesalone.Theseheterogeneousfeaturescannotbeusedalltogethertotrainasingleclassifier(andeveniftheycould-byconvertingallfeaturesintoavectorofscalarvalues-suchatrainingisunlikelytobesuccessful).Insuchcases,anensembleofclassifierscanbeused,whereaseparateclassifieristrainedoneachofthefeaturesetsindependently.Thedecisionsmadebyeachclassifiercanthenbecombinedbyanyofthecombinationrulesdescribedbelow.2023/11/4EnsembleLearningLesson7-15ScenariosforusingensemblelearningConfidenceEstimationTheverystructureofanensemblebasedsystemnaturallyallowsassigningaconfidencetothedecisionmadebysuchasystem.Ifavastmajorityoftheclassifiersagreewiththeirdecisions,suchanoutcomecanbeinterpretedastheensemblehavinghighconfidenceinitsdecision.If,however,halftheclassifiersmakeonedecisionandtheotherhalfmakeadifferentdecision,thiscanbeinterpretedastheensemblehavinglowconfidenceinitsdecision.2023/11/4EnsembleLearningLesson7-16WhyensemblessuperiortosinglesSuppose,theerrorofbaselearnersAnensemblewithvotingcanbepresentedasTheerroroftheensembleis2023/11/4EnsembleLearningLesson7-17MethodsforconstructingensemblesSubsamplingthetrainingexamplesMultiplehypothesesaregeneratedbytrainingindividualclassifiersondifferentdatasetsobtainedbyresamplingacommontrainingset.ManipulatingtheinputfeatureMultiplehypothesesaregeneratedbytrainingindividualclassifiersondifferentrepresentations,ordifferentsubsetsofacommonfeaturevectorManipulatingtheoutputtargetsTheoutputtargetsforCclassesareencodedwithanL-bitcodeword,andanindividualclassifierisbuilttopredicteachoneofthebitsinthecodewordModifyingthelearningparametersoftheclassifierAnumberofclassifiersarebuiltwithdifferentlearningalgorithms,suchasnumberofneighborsinaKNNrule,initialweightsinanMPL.2023/11/4EnsembleLearningLesson7-18EnsemblecombinationrulesAlgebraiccombiners(代數(shù)結(jié)合)Algebraiccombinersare
non-trainablecombiners,wherecontinuousvaluedoutputsofclassifiersarecombinedthroughanalgebraicexpression.2023/11/4EnsembleLearningLesson7-19EnsemblecombinationrulesAlgebraiccombinersVotingbasedmethodsVotingbasedmethodsoperateonlabelsonlyMajority(plurality)votingWeightedmajorityvoting2023/11/4EnsembleLearningLesson7-20EnsemblecombinationrulesAlgebraiccombinersVotingbasedmethodsOthercombinationrules
Bordacount
behaviorknowledgespace
(Huang1993)"decisiontemplates"(Kuncheva2001)
Dempster-Schaferrule
(Kittler1998).Foradetailedoverviewoftheseandothercombinationrules,see(L.I.Kuncheva,CombiningPatternClassifiers,MethodsandAlgorithms.NewYork,NY:WileyInterscience,2005.).2023/11/4EnsembleLearningLesson7-21EnsembleLearningIntroductionCommonlyusedensemblelearningalgorithmsBaggingRandomforestBoostingsklearn.ensemble:EnsembleMethods2023/11/4EnsembleLearningLesson7-22CommonlyusedensemblelearningalgorithmsBagging(
bootstrap(自展法)aggregating)isoneoftheearliest,mostintuitiveandperhapsthesimplestensemblebasedalgorithmsBaggingcreatesanensemblebytrainingindividualclassifiersonbootstrapsamplesofthetrainset.Buildaclassifieroneachbootstrapsample2023/11/4EnsembleLearningLesson7-232023/11/4EnsembleLearningLesson7-242023/11/4EnsembleLearningLesson7-25H1H2H3H4SamplingN’exampleswithreplacementSet1Set2Set3Set4(usuallyN=N’)Ntrainingexamples2023/11/4EnsembleLearningLesson7-26y1H1H2H3H4y2y3y4Average/votingTestingdataxThisapproachwouldbehelpfulwhenyourmodeliscomplex,easytooverfit.e.g.decisiontreeTheperturbationinthetrainingsetduetothebootstrapresamplingcausesdifferenthypothesestobebuilt,particularlyiftheclassifierisunstableAclassifierissaidtobeunstableifasmallchangeinthetrainingdata(e.g.orderofpresentationofexample)canbeleadtoaradicallydifferenthypothesis.E.g.decisiontrees,neuralnetwork,logisticsregressionBaggingreducesvarianceIfasingleclassifierisunstable,thatis,ithashighvariance2023/11/4EnsembleLearningLesson7-27BaggingreducesvarianceIfasingleclassifierisunstable,thatis,ithashighvarianceBaggingworkswellforunstablelearningalgorithms.Baggingcanslightlydegradetheperformanceofstablelearningalgorithms.Baggingalmostalwayshelpswithregression,butevenwithunstablelearners,itcanhurtinclassification.2023/11/4EnsembleLearningLesson7-28RandomforestRandomForestsareanimprovement
overbaggeddecisiontrees.AproblemwithdecisiontreeslikeCARTisthattheyaregreedy.Theychoosewhichvariabletosplitonusingagreedyalgorithmthatminimizeserror.Assuch,evenwithBagging,thedecisiontreescanhavealotofstructuralsimilaritiesandinturnhavehighcorrelationintheirpredictions.Combiningpredictionsfrommultiplemodelsinensemblesworksbetterifthepredictionsfromthesub-modelsareuncorrelatedoratbestweaklycorrelated.2023/11/4EnsembleLearningLesson7-29RandomforestRandomForestsareanimprovement
overbaggeddecisiontrees.Randomforestchangesthealgorithmforthewaythatthesub-treesarelearnedsothattheresultingpredictionsfromallofthesubtreeshavelesscorrelation.Therandomforestalgorithmchangesthisproceduresothatthelearningalgorithmislimitedtoarandomsampleoffeaturesofwhichtosearch.2023/11/4EnsembleLearningLesson7-30RandomforestRandomForestsareanimprovement
overbaggeddecisiontrees.Motivation:reduceerrorcorrelationbetweenclassifiersMainidea:buildalargernumberofun-pruneddecisiontreesKey:usingarandomselectionoffeaturestosplitonateachnode(使用隨機(jī)選擇的特征子集來(lái)選擇最佳分割特征)2023/11/4EnsembleLearningLesson7-31RandomforestHowRandomforestworksEachtreeisgrownonabootstrapsampleofthetrainingsetofNexamples.AnumbermisspecifiedmuchsmallerthanthetotalnumberofvariablesM(e.g.m=sqrt(M)).Ateachnode,mvariablesareselectedatrandomoutoftheM.Thesplitusedisthebestsplitonthesemvariables.Finalclassificationisdonebymajorityvoteacrosstrees.2023/11/4EnsembleLearningLesson7-32gcForestDeepForest:TowardsAnAlternativetoDeepNeuralNetworksgcForest采用了cascade的結(jié)構(gòu),每層接受特征信息,經(jīng)過(guò)處理后傳給下一層。每一層都是一個(gè)決策樹(shù)深林的總體,也就是由多個(gè)隨機(jī)深林組成。隨機(jī)深林的類型越多越好。論文中給定的有兩種類型的隨機(jī)深林,藍(lán)色表示randomforests,黑色表示complete-randomtreeforests。2023/11/4EnsembleLearningLesson7-33gcForestDeepForest:TowardsAnAlternativetoDeepNeuralNetworksIncontrasttodeepneuralnetworkswhichrequiregreateffortinhyper-parametertuning,gcForestismucheasiertotrain;evenwhenitisappliedtodifferentdataacrossdifferentdomainsinourexperiments,excellentperformancecanbeachievedbyalmostsamesettingsofhyper-parameters.ThetrainingprocessofgcForestisefficient,anduserscancontroltrainingcostaccordingtocomputationalresourceavailable.TheefficiencymaybefurtherenhancedbecausegcForestisnaturallyapttoparallelimplementation.Furthermore,incontrasttodeepneuralnetworkswhichrequirelargescaletrainingdata,gcForestcanworkwellevenwhenthereareonlysmall-scaletrainingdata.。2023/11/4EnsembleLearningLesson7-34PerformanceofgcForestImageCategorizationFaceRecognitionMusicClassificationHandMovementRecognition…2023/11/4EnsembleLearningLesson7-35gcForest
Officialimplementationforthepaper'Deepforest:Towardsanalternativetodeepneuralnetworks'Pythonimplementationofdeepforestmethod:gcForest2023/11/4EnsembleLearningLesson7-36BoostingBoosting
isa
machinelearningensemble
meta-algorithm
forprimarilyreducing
bias,andalsovariancein
supervisedlearning,andafamilyofmachinelearningalgorithmswhichconvertweaklearnerstostrongones.Boosting
alsocreatesanensembleofclassifiersbyresamplingthedata,whicharethencombinedbymajorityvotinginboosting,resamplingisstrategicallygearedtoprovidethemostinformativetrainingdata(最具信息的訓(xùn)練數(shù)據(jù),即前面分類器預(yù)測(cè)錯(cuò)誤的訓(xùn)練數(shù)據(jù))foreachconsecutiveclassifier2023/11/4EnsembleLearningLesson7-37Boosting[Schapire,1989]2023/11/4EnsembleLearningLesson7-38AdaBoostAdaBoost
(AdaptiveBoosting)extendsboostingtomulti-classandregressionproblems.
usingre-weightinsteadofresampling,andadaptivelyweigheachdataexample.Dataexampleswhicharewronglyclassifiedgethighweight(thealgorithmwillfocusonthem)Eachboostingroundlearnsanew(simple)classifierontheweigheddataset.Theseclassifiersareweighedtocombinethemintoasinglepowerfulclassifier.2023/11/4EnsembleLearningLesson7-392023/11/4EnsembleLearningLesson7-40EnsembleLearningIntroductionCommonlyusedensemblelearningalgorithmsBaggingRandomforestBoostingsklearn.ensemble:EnsembleMethods2023/11/4EnsembleLearningLesson7-41sklearn.ensemble:EnsembleMethodsThe
sklearn.ensemble
moduleincludesensemble-basedmethodsforclassification,regressionandanomalydetection.2023/11/4EnsembleLearningLesson7-42ensemble.AdaBoostClassifier([…])AnAdaBoostclassifier.ensemble.AdaBoostRegressor([base_estimator,
…])AnAdaBoostregressor.ensemble.BaggingClassifier([base_estimator,
…])ABaggingclassifier.ensemble.BaggingRegressor([base_estimator,
…])ABaggingregressor.ensemble.RandomForestClassifier([…])Arandomforestclassifier.ensemble.RandomForestRegressor([…])Arandomforestregressor.ensemble.RandomTreesEmbedding([…])Anensembleoftotallyrandomtrees.ensemble.VotingClassifier(estimators[,
…])SoftVoting/MajorityRuleclassifierforunfittedestimators.sklearn.ensemble:EnsembleMethodsclass
sklearn.ensemble.BaggingClassifier(base_estimator=None,
n_estimators=10,
max_samples=1.0,
max_features=1.0,
bootstrap=True,
bootstrap_features=False,
oob_score=False,
warm_start=False,
n_jobs=None,
random_state=None,
verbose=0)Thisalgorithmencompassesseveralworksfromtheliterature.Whenrandomsubsetsofthedatasetaredrawnasrandomsubsetsofthesamples,thenthisalgorithmisknownasPasting
[1].Ifsamplesaredrawnwithreplacement,thenthemethodisknownasBagging
[2].Whenrandomsubsetsofthedatasetaredrawnasrandomsubsetsofthefeatures,thenthemethodisknownasRandomSubspaces
[3].Finally,whenbaseestimatorsarebuiltonsubsetsofbothsamplesandfeatures,thenthemethodisknownasRandomPatches
[4].2023/11/4EnsembleLearningLesson7-43sklearn.ensemble:EnsembleMethodsclass
sklearn.ensemble.RandomForestClassifier(n_estimators=’warn’,
criterion=’gini’,
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’,
max_
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024人工智能安全標(biāo)準(zhǔn)與風(fēng)險(xiǎn)評(píng)估預(yù)警
- 儲(chǔ)能電站系統(tǒng)基礎(chǔ)培訓(xùn)
- 林下經(jīng)濟(jì)施工方案
- 合同范本補(bǔ)償合同
- 吃奶魚合伙合同范例
- 行業(yè)主管工作總結(jié)的實(shí)施進(jìn)度計(jì)劃
- 品牌內(nèi)容營(yíng)銷的成功實(shí)踐計(jì)劃
- 發(fā)展幼兒自信心的教育活動(dòng)計(jì)劃
- 人事部?jī)?nèi)部流程再造計(jì)劃
- 企業(yè)文化建設(shè)的實(shí)施計(jì)劃
- 狐貍的養(yǎng)殖技術(shù)
- GB/T 3280-2015不銹鋼冷軋鋼板和鋼帶
- GB/T 2851.5-1990沖模滑動(dòng)導(dǎo)向模架中間導(dǎo)柱模架
- GB/T 28267.4-2015鋼絲繩芯輸送帶第4部分:帶的硫化接頭
- GB/T 20833.4-2021旋轉(zhuǎn)電機(jī)繞組絕緣第4部分:絕緣電阻和極化指數(shù)測(cè)量
- GB/T 17187-2009農(nóng)業(yè)灌溉設(shè)備滴頭和滴灌管技術(shù)規(guī)范和試驗(yàn)方法
- GB/T 12459-1990鋼制對(duì)焊無(wú)縫管件
- 公司參觀登記表
- GB 20517-2006獨(dú)立式感煙火災(zāi)探測(cè)報(bào)警器
- 診所備案信息表2022
- 儀器校正培訓(xùn)教材課件
評(píng)論
0/150
提交評(píng)論