版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省浮梁一中2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,在直線l上,則直線l一個(gè)方向向量為()A. B.C. D.2.若直線與直線垂直,則()A.6 B.4C. D.3.一個(gè)幾何體的三視圖都是半徑為1的圓,在該幾何體內(nèi)放置一個(gè)高度為1的長(zhǎng)方體,則長(zhǎng)方體的體積最大值為()A. B.C. D.14.在四面體OABC中,,,,則與AC所成角的大小為()A.30° B.60°C.120° D.150°5.設(shè)圓上的動(dòng)點(diǎn)到直線的距離為,則的取值范圍是()A. B.C. D.6.已知雙曲線(,)的左,右焦點(diǎn)分別為,.若雙曲線右支上存在點(diǎn),使得與雙曲線的一條漸近線垂直并相交于點(diǎn),且,則雙曲線的漸近線方程為()A. B.C. D.7.對(duì)于三次函數(shù),給出定義:設(shè)是函數(shù)的導(dǎo)數(shù),是的導(dǎo)數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”.經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)圖象都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.設(shè)函數(shù),則()A. B.C. D.8.如圖,我市某地一拱橋垂直軸截面是拋物線,已知水利人員在某個(gè)時(shí)刻測(cè)得水面寬,則此時(shí)刻拱橋的最高點(diǎn)到水面的距離為()A. B.C. D.9.已知隨機(jī)變量服從正態(tài)分布,,則()A. B.C. D.10.過(guò)原點(diǎn)O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A B.C. D.11.已知等差數(shù)列為其前項(xiàng)和,且,且,則()A.36 B.117C. D.1312.?dāng)?shù)學(xué)中的數(shù)形結(jié)合也可以組成世間萬(wàn)物的絢麗畫(huà)面,-些優(yōu)美的曲線是數(shù)學(xué)形象美、對(duì)稱美、和諧美的產(chǎn)物.曲線C:為四葉玫瑰線.①方程(xy<0)表示的曲線在第二和第四象限;②曲線C上任一點(diǎn)到坐標(biāo)原點(diǎn)0的距離都不超過(guò)2;③曲線C構(gòu)成的四葉玫瑰線面積大于4π;④曲線C上有5個(gè)整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).則上述結(jié)論中正確的個(gè)數(shù)是()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.長(zhǎng)方體中,,,已知點(diǎn)H,A,三點(diǎn)共線,且,則點(diǎn)H到平面ABCD的距離為_(kāi)_____14.已知拋物線的焦點(diǎn)為,過(guò)焦點(diǎn)的直線交拋物線與兩點(diǎn),且,則拋物線的準(zhǔn)線方程為_(kāi)_______.15.我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層燈數(shù)為_(kāi)____________16.若拋物線:上的一點(diǎn)到它的焦點(diǎn)的距離為3,則__.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,雙曲線的左、右兩個(gè)焦點(diǎn)為、,動(dòng)點(diǎn)P滿足(1)求動(dòng)點(diǎn)P的軌跡E的方程;(2)設(shè)過(guò)且不垂直于坐標(biāo)軸的動(dòng)直線l交軌跡E于A、B兩點(diǎn),問(wèn):線段上是否存在一點(diǎn)D,使得以DA、DB為鄰邊的平行四邊形為菱形?若存在,請(qǐng)給出證明:若不存在,請(qǐng)說(shuō)明理由18.(12分)已知數(shù)列滿足且.(1)證明數(shù)列是等比數(shù)列;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.19.(12分)已知函數(shù)(1)求函數(shù)單調(diào)區(qū)間;(2)函數(shù)在區(qū)間上的最小值小于零,求a的取值范圍20.(12分)為深入學(xué)習(xí)貫徹總書(shū)記在黨史學(xué)習(xí)教育動(dòng)員大會(huì)上的重要講話精神和中共中央有關(guān)決策部署,推動(dòng)教育系統(tǒng)圍繞建黨百年重大主題,深化中學(xué)在校師生理想信念教育,引導(dǎo)師生學(xué)史明理、學(xué)史增信、學(xué)史崇德、學(xué)史力行,以昂揚(yáng)的狀態(tài)迎接中國(guó)共產(chǎn)黨建黨周年,哈工大附中高二年級(jí)組織本年級(jí)同學(xué)開(kāi)展了一場(chǎng)黨史知識(shí)競(jìng)賽.為了解本次知識(shí)競(jìng)賽的整體情況,隨機(jī)抽取了名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖(1)求直方圖中a的值,并求該次知識(shí)競(jìng)賽成績(jī)的第50百分位數(shù)(精確到0.1);(2)已知該樣本分?jǐn)?shù)在的學(xué)生中,男生占,女生占現(xiàn)從該樣本分?jǐn)?shù)在的學(xué)生中隨機(jī)抽出人,求至少有人是女生的概率.21.(12分)在①(b-c)cosA=acosC,②sin(B+C)=-1+2sin2,③acosC=b-c,這三個(gè)條件中任選一個(gè)作為已知條件,然后解答問(wèn)題在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知______________(1)求角A的大?。唬?)若a=2,且△ABC的面積為2,求b+c22.(10分)已知數(shù)列的前n項(xiàng)和為,,,其中.(1)記,求證:是等比數(shù)列;(2)設(shè),數(shù)列的前n項(xiàng)和為,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用直線的方向向量的定義直接求解.【詳解】因?yàn)?,在直線l上,所以直線l的一個(gè)方向向量為.故選:C.2、A【解析】由兩條直線垂直的條件可得答案.【詳解】由題意可知,即故選:A.3、B【解析】根據(jù)題意得到幾何體為半徑為1的球,長(zhǎng)方體的體對(duì)角線為球的直徑時(shí),長(zhǎng)方體體積最大,設(shè)出長(zhǎng)方體的長(zhǎng)和寬,得到等量關(guān)系,利用基本不等式求解體積最大值.【詳解】由題意得:此幾何體為半徑為1的球,長(zhǎng)方體為球的內(nèi)接長(zhǎng)方體時(shí),體積最大,此時(shí)長(zhǎng)方體的體對(duì)角線為球的直徑,設(shè)長(zhǎng)方體長(zhǎng)為,寬為,則由題意得:,解得:,而長(zhǎng)方體體積為,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故選:B4、B【解析】以為空間的一個(gè)基底,求出空間向量求的夾角即可判斷作答.【詳解】在四面體OABC中,不共面,則,令,依題意,,設(shè)與AC所成角的大小為,則,而,解得,所以與AC所成角的大小為.故選:B5、C【解析】求出圓心到直線距離,再借助圓的性質(zhì)求出d的最大值與最小值即可.【詳解】圓的方程化為,圓心為,半徑為1,則圓心到直線的距離,即直線和圓相離,因此,圓上的動(dòng)點(diǎn)到直線的距離,有,,即,即的取值范圍是:.故選:C6、B【解析】利用漸近線方程和直線解出Q點(diǎn)坐標(biāo),再由得P點(diǎn)坐標(biāo),代入雙曲線方程得到a、b、c的齊次式可解.【詳解】如圖,因?yàn)榕c漸近線垂直所以的斜率為,方程為解的Q的坐標(biāo)為設(shè)P點(diǎn)坐標(biāo)為則,因?yàn)?,所以,得點(diǎn)P坐標(biāo)為,代入得:所以,即所以漸近線方程為故選:B.7、B【解析】根據(jù)“拐點(diǎn)”的概念可判斷函數(shù)的對(duì)稱中心,進(jìn)而求解.【詳解】,,,令,解得:,而,故函數(shù)關(guān)于點(diǎn)對(duì)稱,,,故選:B.8、D【解析】代入計(jì)算即可.【詳解】設(shè)B點(diǎn)的坐標(biāo)為,由拋物線方程得,則此時(shí)刻拱橋的最高點(diǎn)到水面的距離為2米.故選:D9、B【解析】直接利用正態(tài)分布的應(yīng)用和密度曲線的對(duì)稱性的應(yīng)用求出結(jié)果【詳解】根據(jù)隨機(jī)變量服從正態(tài)分布,所以密度曲線關(guān)于直線對(duì)稱,由于,所以,所以,則,所以故選:B.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):正態(tài)分布的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題10、A【解析】直線AC、BD與坐標(biāo)軸重合時(shí)求出四邊形面積,與坐標(biāo)軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對(duì)角線互相垂直,由橢圓性質(zhì)知,四邊形ABCD的四個(gè)頂點(diǎn)為橢圓頂點(diǎn)時(shí),而,四邊形ABCD的面積,當(dāng)直線AC斜率存在且不0時(shí),設(shè)其方程為,由消去y得:,設(shè),則,,直線BD方程為,同理得:,則有,當(dāng)且僅當(dāng),即或時(shí)取“=”,而,所以四邊形ABCD面積最小值為.故選:A11、B【解析】根據(jù)等差數(shù)列下標(biāo)的性質(zhì),,進(jìn)而根據(jù)條件求出,然后結(jié)合等差數(shù)列的求和公式和下標(biāo)性質(zhì)求得答案.【詳解】由題意,,即為遞增數(shù)列,所以,又,又,聯(lián)立方程組解得:.于是,.故選:B.12、B【解析】對(duì)于①,由判斷,對(duì)于②,利用基本不等式可判斷,對(duì)于③,以為圓心,2為半徑的圓的面積與曲線圍成的面積進(jìn)行比較即可,對(duì)于④,將和聯(lián)立,求解出兩曲線的切點(diǎn),從而可判斷【詳解】對(duì)于①,由,得異號(hào),方程(xy<0)關(guān)于原點(diǎn)及y=x對(duì)稱,所以方程(xy<0)表示的曲線在第二和第四象限,所以①正確,對(duì)于②,因?yàn)?,所以,所以,所以,所以由曲線的對(duì)稱性可知曲線C上任一點(diǎn)到坐標(biāo)原點(diǎn)0的距離都不超過(guò)2,所以②正確,對(duì)于③,由②可知曲線C上到原點(diǎn)的距離不超過(guò)2,而以為圓心,2為半徑的圓的面積為,所以曲線C構(gòu)成的四葉玫瑰線面積小于4π,所以③錯(cuò)誤,對(duì)于④,將和聯(lián)立,解得,所以可得圓與曲線C相切于點(diǎn),,,,而點(diǎn)(1,1)不滿足曲線方程,所以曲線在第一象限不經(jīng)過(guò)任何整數(shù)點(diǎn),由曲線的對(duì)稱性可知曲線在其它象限也不經(jīng)過(guò)任何整數(shù)點(diǎn),所以曲線C上只有1個(gè)整點(diǎn)(0,0),所以④錯(cuò)誤,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】在長(zhǎng)方體中,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,利用已知條件求出點(diǎn)H的坐標(biāo)作答.【詳解】在長(zhǎng)方體中,以點(diǎn)A為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,因點(diǎn)H,A,三點(diǎn)共線,令,點(diǎn),則,又,則,解得,所以點(diǎn)到平面ABCD的距離為.故答案為:14、【解析】根據(jù)題意作出圖形,設(shè)直線與軸的夾角為,不妨設(shè),設(shè)拋物線的準(zhǔn)線與軸的交點(diǎn)為,過(guò)點(diǎn)作準(zhǔn)線與軸的垂線,垂足分別為,過(guò)點(diǎn)分別作準(zhǔn)線和軸的垂線,垂足分別為,進(jìn)一步可以得到,進(jìn)而求出,同理求出,最后解得答案.【詳解】設(shè)直線與軸的夾角為,根據(jù)拋物線的對(duì)稱性,不妨設(shè),如圖所示.設(shè)拋物線的準(zhǔn)線與軸的交點(diǎn)為,過(guò)點(diǎn)作準(zhǔn)線與軸的垂線,垂足分別為,過(guò)點(diǎn)分別作準(zhǔn)線和軸的垂線,垂足分別為.由拋物線的定義可知,,同理:,于是,,則拋物線的準(zhǔn)線方程為:.故答案為:.15、3【解析】分析:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,利用等比數(shù)列前n項(xiàng)和公式能求出結(jié)果詳解:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,∴S7==381,解得a1=3.故答案為3.點(diǎn)睛:本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力.16、【解析】通過(guò)拋物線的定義列式求解【詳解】根據(jù)拋物線的定義知,所以.故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)存在,理由見(jiàn)解析.【解析】(1)根據(jù)題意用定義法求解軌跡方程;(2)在第一問(wèn)的基礎(chǔ)上,設(shè)出直線l的方程,聯(lián)立橢圓方程,用韋達(dá)定理表達(dá)出兩根之和,兩根之積,求出直線l的垂直平分線,從而得到D點(diǎn)坐標(biāo),證明出結(jié)論.【小問(wèn)1詳解】由題意得:,所以,,而,故動(dòng)點(diǎn)P的軌跡E的方程為以點(diǎn)、為焦點(diǎn)的橢圓方程,由得:,,所以動(dòng)點(diǎn)P的軌跡E的方程為;【小問(wèn)2詳解】存,理由如下:顯然,直線l的斜率存在,設(shè)為,聯(lián)立橢圓方程得:,設(shè),,則,,要想以DA、DB為鄰邊的平行四邊形為菱形,則點(diǎn)D為AB垂直平分線上一點(diǎn),其中,,則,故AB的中點(diǎn)坐標(biāo)為,則AB的垂直平分線為:,令得:,且無(wú)論為何值,,點(diǎn)D在線段上,滿足題意.18、(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)題意可得,根據(jù)等比數(shù)列的定義,即可得證;(2)由(1)可得,可得,利用累加法即可求得數(shù)列的通項(xiàng)公式.【詳解】(1)因?yàn)?,所以,即,所以是首?xiàng)為1公比為3的等比數(shù)列(2)由(1)可知,所以因?yàn)?,所以……,,各式相加得:,又,所以,又?dāng)n=1時(shí),滿足上式,所以19、(1)答案見(jiàn)解析;(2).【解析】(1)對(duì)求導(dǎo)并求定義域,討論、分別判斷的符號(hào),進(jìn)而確定單調(diào)區(qū)間.(2)由題設(shè),結(jié)合(1)所得的單調(diào)性,討論、、分別確定在給定區(qū)間上的最小值,根據(jù)最小值小于零求參數(shù)a的范圍.【小問(wèn)1詳解】由題設(shè),且定義域?yàn)椋?dāng),即時(shí),在上,即在上遞增;當(dāng),即時(shí),在上,在上,所以在上遞減,在上遞增;【小問(wèn)2詳解】由(1)知:若,即時(shí),則在上遞增,故,可得;若,即時(shí),則在上遞減,在上遞增,故,不合題設(shè);若,即時(shí),則在上遞減,故,得;綜上,a的取值范圍.20、(1)(2)【解析】(1)利用頻率和為1求出a;利用百分位數(shù)的定義求出知識(shí)競(jìng)賽成績(jī)的第50百分位數(shù);(2)先利用分層抽樣求出男、女生的人數(shù),利用古典概型求概率.【小問(wèn)1詳解】,由,解得設(shè)該次知識(shí)競(jìng)賽成績(jī)的第50百分位數(shù)為x,則,解得:.即該次知識(shí)競(jìng)賽成績(jī)的第50百分位數(shù)為【小問(wèn)2詳解】由頻率分布直方圖可知:分?jǐn)?shù)在)的人數(shù)有人,所以這人中,女生有人,記為、,男生有人,記為、、、從這人中隨機(jī)選取人,基本事件為:、、、、、、、、、、、、、、,共種不同取法;則至少有人是女生的基本事件為、、、、、、、、,共種不同取法,則所求的概率為21、(1)(2)【解析】(1)選①:化邊為角化簡(jiǎn)求出cos;選②:利用倍角公式將sin()=?1+2sin2化簡(jiǎn)為sin=?cos,再利用輔助角公式求解即可;選③:化邊為角化簡(jiǎn)運(yùn)算求解(2)利用面積公式求得,再利用余弦定理可得,計(jì)算即可.【小問(wèn)1詳解】選①∵∴sincos=sinCcos+sincosC=sin(+C)=sin∴cos∵∈,∴=選②∵sin()=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024學(xué)校維修合同書(shū)
- 2024年度網(wǎng)站域名合作契約
- 新建住宅購(gòu)買(mǎi)合同樣本
- 藥品銷(xiāo)售代理合同范例
- 高中生宿舍管理規(guī)定范本
- 建筑機(jī)械租賃合同簡(jiǎn)易格式
- 2024年資產(chǎn)抵債協(xié)議書(shū)
- 房屋房基流轉(zhuǎn)協(xié)議書(shū)-合同范本
- 制造企業(yè)員工合同樣本
- 產(chǎn)品加工合同典范
- 電力工程施工售后保障方案
- 2024年小學(xué)心理咨詢室管理制度(五篇)
- 第16講 國(guó)家出路的探索與挽救民族危亡的斗爭(zhēng) 課件高三統(tǒng)編版(2019)必修中外歷史綱要上一輪復(fù)習(xí)
- 機(jī)器學(xué)習(xí) 課件 第10、11章 人工神經(jīng)網(wǎng)絡(luò)、強(qiáng)化學(xué)習(xí)
- 北京市人民大學(xué)附屬中學(xué)2025屆高二生物第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析
- 書(shū)籍小兵張嘎課件
- 氫氣中鹵化物、甲酸的測(cè)定 離子色譜法-編制說(shuō)明
- 2024秋期國(guó)家開(kāi)放大學(xué)專(zhuān)科《機(jī)械制圖》一平臺(tái)在線形考(形成性任務(wù)四)試題及答案
- 2024年黑龍江哈爾濱市通河縣所屬事業(yè)單位招聘74人(第二批)易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 私募基金管理人-廉潔從業(yè)管理準(zhǔn)則
- 房地產(chǎn)估價(jià)機(jī)構(gòu)內(nèi)部管理制度
評(píng)論
0/150
提交評(píng)論