湖北省巴東三中2023-2024學年高二上數(shù)學期末檢測模擬試題含解析_第1頁
湖北省巴東三中2023-2024學年高二上數(shù)學期末檢測模擬試題含解析_第2頁
湖北省巴東三中2023-2024學年高二上數(shù)學期末檢測模擬試題含解析_第3頁
湖北省巴東三中2023-2024學年高二上數(shù)學期末檢測模擬試題含解析_第4頁
湖北省巴東三中2023-2024學年高二上數(shù)學期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省巴東三中2023-2024學年高二上數(shù)學期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是拋物線的焦點,是拋物線的準線,點,連接交拋物線于點,,則的面積為()A.4 B.9C. D.2.在一個正方體中,為正方形四邊上的動點,為底面正方形的中心,分別為中點,點為平面內一點,線段與互相平分,則滿足的實數(shù)的值有A.0個 B.1個C.2個 D.3個3.過拋物線的焦點的直線交拋物線于不同的兩點,則的值為A.2 B.1C. D.44.對于實數(shù)a,b,c,下列命題中的真命題是()A.若,則 B.,則C.若,,則, D.若,則5.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點,,則為()A. B.C. D.6.中心在原點的雙曲線C的右焦點為,實軸長為2,則雙曲線C的方程為()A. B.C. D.7.某機構通過抽樣調查,利用列聯(lián)表和統(tǒng)計量研究患肺病是否與吸煙有關,計算得,經查對臨界值表知,,現(xiàn)給出四個結論,其中正確的是()A.因為,故有90%的把握認為“患肺病與吸煙有關"B.因為,故有95%把握認為“患肺病與吸煙有關”C.因為,故有90%的把握認為“患肺病與吸煙無關”D.因為,故有95%的把握認為“患肺病與吸煙無關”8.命題;命題.則A.“或”為假 B.“且”為真C.真假 D.假真9.已知在四棱錐中,平面,底面是邊長為4的正方形,,E為棱的中點,則直線與平面所成角的正弦值為()A. B.C. D.10.變量,滿足約束條件則的最小值為()A. B.C. D.511.橢圓上一點到一個焦點的距離為,則到另一個焦點的距離是()A. B.C. D.12.函數(shù)在單調遞增的一個必要不充分條件是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)僅有一個零點,則實數(shù)的取值范圍是_________.14.已知數(shù)列是公差不為零的等差數(shù)列,,,成等比數(shù)列,第1,2項與第10,11項的和為68,則數(shù)列的通項公式是________.15.已知拋物線的焦點為,過焦點的直線交拋物線與兩點,且,則拋物線的準線方程為________.16.已知、是橢圓()長軸的兩個端點,、是橢圓上關于軸對稱的兩點,直線,的斜率分別為,().若橢圓的離心率為,則的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:的焦點為,直線與拋物線在第一象限的交點為,且(1)求拋物線的方程;(2)經過焦點作互相垂直的兩條直線,,與拋物線相交于,兩點,與拋物線相交于,兩點.若,分別是線段,的中點,求的最小值18.(12分)在中,,,的對邊分別是,,,已知.(1)求;(2)若,且的面積為4,求的周長19.(12分)圓的圓心為,且與直線相切,求:(1)求圓的方程;(2)過的直線與圓交于,兩點,如果,求直線的方程20.(12分)已知拋物線的焦點是橢圓的一個焦點,直線交拋物線E于兩點(1)求E的方程;(2)若以BC為直徑的圓過原點O,求直線l的方程21.(12分)已知命題p:實數(shù)x滿足;命題q:實數(shù)x滿足.若p是q的必要條件,求實數(shù)a的取值范圍22.(10分)已知數(shù)列是等差數(shù)列,數(shù)列是各項均為正數(shù)的等比數(shù)列,且,,.(1)求數(shù)列和的通項公式;(2)設,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意求得拋物線的方程為和焦點為,由,得到為的中點,得到,代入拋物線方程,求得,進而求得的面積.【詳解】由直線是拋物線的準線,可得,即,所以拋物線的方程為,其焦點為,因為,可得可得三點共線,且為的中點,又因為,,所以,將點代入拋物線,可得,所以的面積為.故選:D.2、C【解析】因為線段D1Q與OP互相平分,所以四點O,Q,P,D1共面,且四邊形OQPD1為平行四邊形.若P在線段C1D1上時,Q一定在線段ON上運動,只有當P為C1D1的中點時,Q與點M重合,此時λ=1,符合題意若P在線段C1B1與線段B1A1上時,在平面ABCD找不到符合條件Q;在P在線段D1A1上時,點Q在直線OM上運動,只有當P為線段D1A1的中點時,點Q與點M重合,此時λ=0符合題意,所以符合條件的λ值有兩個故選C.3、D【解析】本題首先可以通過直線交拋物線于不同的兩點確定直線的斜率存在,然后設出直線方程并與拋物線方程聯(lián)立,求出以及的值,然后通過拋物線的定義將化簡,最后得出結果【詳解】因為直線交拋物線于不同的兩點,所以直線的斜率存在,設過拋物線的焦點的直線方程為,由可得,,因為拋物線的準線方程為,所以根據(jù)拋物線的定義可知,,所以,綜上所述,故選D【點睛】本題考查了拋物線的相關性質,主要考查了拋物線的定義、過拋物線焦點的直線與拋物線相交的相關性質,考查了計算能力,是中檔題4、C【解析】對于選項A,可以舉反例判斷;對于選項BCD可以利用作差法判斷得解.【詳解】解:A.若,則不一定成立.如:.所以該選項錯誤;B.,所以,所以該選項錯誤;C.,所以該選項正確;D.,所以該選項錯誤.故選:C5、B【解析】根據(jù)空間向量運算求得正確答案.【詳解】.故選:B6、D【解析】根據(jù)條件,求出,的值,結合雙曲線的方程進行求解即可【詳解】解:設雙曲線的方程為由已知得:,,再由,,雙曲線的方程為:故選:D7、A【解析】根據(jù)給定條件利用獨立性檢驗的知識直接判斷作答.【詳解】因,且,由臨界值表知,,,所以有90%的把握認為“患肺病與吸煙有關”,則A正確,C不正確;.因臨界值3.841>3.305,則不能確定有95%的把握認為“患肺病與吸煙有關”,也不能確定有95%的把握認為“患肺病與吸煙無關”,即B,D都不正確.故選:A8、D【解析】命題:可能為0,不為0,假命題,命題:,為真命題,所以“或”為真命題,“且”為假命題.選D.9、B【解析】建立空間直角坐標系,以向量法去求直線與平面所成角的正弦值即可.【詳解】平面,底面是邊長為4的正方形,則有,而,故平面,以A為原點,分別以AB、AD、AP所在直線為x軸、y軸、z軸建立空間直角坐標系如圖:則,,,設直線與平面所成角為,又由題可知為平面的一個法向量,則故選:B10、A【解析】根據(jù)不等式組,作出可行域,數(shù)形結合即可求z的最小值.【詳解】根據(jù)不等式組作出可行域如圖,,則直線過A(-1,0)時,z取最小值.故選:A.11、B【解析】利用橢圓的定義可得結果.【詳解】在橢圓中,,由橢圓的定義可知,到另一個焦點的距離是.故選:B.12、D【解析】求出導函數(shù),由于函數(shù)在區(qū)間單調遞增,可得在區(qū)間上恒成立,求出的范圍,再根據(jù)充分必要條件的定義即可判斷得解.【詳解】由題得,函數(shù)在區(qū)間單調遞增,在區(qū)間上恒成立,而在區(qū)間上單調遞減,選項中只有是的必要不充分條件.選項AC是的充分不必要條件,選項B是充要條件.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意求出函數(shù)的導函數(shù)并且通過導數(shù)求出原函數(shù)的單調區(qū)間,進而得到原函數(shù)的極值,因為函數(shù)僅有一個零點,所以結合函數(shù)的性質可得函數(shù)的極大值小于或極小值大于,即可得到答案.【詳解】解:由題意可得:函數(shù),所以,令,則或,令,則,所以函數(shù)的單調增區(qū)間為和,減區(qū)間為所以當時函數(shù)有極大值,當時函數(shù)有極小值,,因為函數(shù)僅有一個零點,,所以或,解得或.所以實數(shù)的取值范圍是故答案為:14、【解析】利用基本量結合已知列方程組求解即可.【詳解】設等差數(shù)列的公差為由題可知即因為,所以解得:所以.故答案為:15、【解析】根據(jù)題意作出圖形,設直線與軸的夾角為,不妨設,設拋物線的準線與軸的交點為,過點作準線與軸的垂線,垂足分別為,過點分別作準線和軸的垂線,垂足分別為,進一步可以得到,進而求出,同理求出,最后解得答案.【詳解】設直線與軸的夾角為,根據(jù)拋物線的對稱性,不妨設,如圖所示.設拋物線的準線與軸的交點為,過點作準線與軸的垂線,垂足分別為,過點分別作準線和軸的垂線,垂足分別為.由拋物線的定義可知,,同理:,于是,,則拋物線的準線方程為:.故答案為:.16、【解析】設出點,,,的坐標,表示出直線,的斜率,作和后利用基本不等式求最值,利用離心率求得與的關系,則答案可求詳解】解:設,,,,,,,,,,,當且僅當,即時等號成立,是橢圓長軸的兩個端點,,是橢圓上關于軸對稱的兩點,,,即,的最小值為,橢圓的離心率為,,即,得,的最小值為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)8.【解析】(1)寫出拋物線E的準線,利用拋物線定義求出p即可作答.(2)由(1)求出焦點坐標,設出直線的方程,并與拋物線E的方程聯(lián)立,由此求出C點坐標,同理可得D點坐標,列式計算作答.小問1詳解】拋物線:的準線方程為:,由拋物線定義得:,解得,所以拋物線的方程為:.【小問2詳解】由(1)知,點,顯然直線,的斜率都存在且不為0,設直線斜率為,則的斜率為,直線的方程為:,由消去y并整理得,設,則,于得線段PQ中點,同理得,則,當且僅當,即時取“=”,所以的最小值是8.【點睛】結論點睛:拋物線方程中,字母p的幾何意義是拋物線的焦點F到準線的距離,等于焦點到拋物線頂點的距離18、(1)(2)【解析】(1)根據(jù)正弦定理及題中條件,可得,化簡整理,即可求解(2)由的面積為4,結合(1)中結論,可得,結合余弦定理,可得,從而可求的周長【詳解】解:(1)由及正弦定理得,,又,∴,∴,∴.(2)∵的面積為,∴.由余弦定理得,∴.故的周長為.【點睛】本題考查正弦定理應用,余弦定理解三角形,三角形面積公式,考查計算化簡的能力,屬基礎題19、(1)(2)或【解析】由點到直線的距離公式求得圓的半徑,則圓的方程可求;當直線的斜率不存在時,求得弦長為,滿足題意;當直線的斜率不存在時,設出直線方程,求出圓心到直線的距離,再由垂徑定理列式求,則直線方程可求【小問1詳解】由題意得:圓的半徑為,則圓的方程為;【小問2詳解】當直線的斜率不存在時,直線方程為,得,符合題意;當直線的斜率存在時,設直線方程為,即圓心到直線的距離,則,解得直線的方程為直線的方程為或20、(1);(2).【解析】(1)利用橢圓的焦點與拋物線的焦點相同,列出方程求解即可(2)設,、,,聯(lián)立直線與拋物線方程,利用韋達定理,通過,求出,得到直線方程【小問1詳解】由題意知:,,∴的方程是【小問2詳解】設,、,,由題意知,由,得,∴,,,∵以為直徑的圓過點,∴,即,∴,解得,∴直線的方程是21、【解析】由題設得是為真時的子集,即,法一:討論、,根據(jù)集合的包含關系求參數(shù)范圍;法二:利用在恒成立,結合參

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論