版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省廣雅中學(xué)、執(zhí)信、六中、深外四校2023-2024學(xué)年高二上數(shù)學(xué)期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切2.散點圖上有5組數(shù)據(jù):據(jù)收集到的數(shù)據(jù)可知,由最小二乘法求得回歸直線方程為,則的值為()A.54.2 B.87.64C.271 D.438.23.已知三棱錐,點分別為的中點,且,用表示,則等于()A. B.C. D.4.已知等比數(shù)列的公比為,則“”是“是遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知點P(5,3,6),直線l過點A(2,3,1),且一個方向向量為,則點P到直線l的距離為()A. B.C. D.6.已知數(shù)列的前n項和為,,,則()A. B.C.1025 D.20497.已知,則下列不等式一定成立的是()A B.C. D.8.是直線與直線互相平行的()條件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要9.已知點,則直線的傾斜角為()A. B.C. D.10.已知數(shù)列滿足,且,那()A.19 B.31C.52 D.10411.已知函數(shù),則的值為()A. B.C. D.12.如圖,在正三棱柱中,若,則C到直線的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線左、右焦點分別為,,點P是雙曲線左支上一點且,則______14.高二某位同學(xué)參加物理、政治科目的學(xué)考,已知這位同學(xué)在物理、政治科目考試中得A的概率分別為、,這兩門科目考試成績的結(jié)果互不影響,則這位考生至少得1個A的概率為______15.已知拋物線C:y2=2px過點P(1,1):①點P到拋物線焦點的距離為②過點P作過拋物線焦點的直線交拋物線于點Q,則△OPQ的面積為③過點P與拋物線相切的直線方程為x-2y+1=0④過點P作兩條斜率互為相反數(shù)的直線交拋物線于M,N兩點,則直線MN的斜率為定值其中正確的是________.16.若等比數(shù)列的前n項和為,且,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)求適合條件的橢圓的標(biāo)準(zhǔn)方程.(1)長軸長是短軸長的2倍,且過點;(2)在x軸上的一個焦點與短軸兩端點的連線互相垂直,且焦距為6.18.(12分)如圖,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E為棱BC上的點,且(1)求證:平面PAC;(2)求二面角A-PC-D的正弦值19.(12分)已知函數(shù),.(1)當(dāng)時,求不等式的解集;(2)若在上恒成立,求取值范圍.20.(12分)已知橢圓過點,且離心率為.(1)求橢圓的方程;(2)過作斜率分別為的兩條直線,分別交橢圓于點,且,證明:直線過定點.21.(12分)已知橢圓C:,右焦點為F(,0),且離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)M,N是橢圓C上不同的兩點,且直線MN與圓O:相切,若T為弦MN的中點,求|OT||MN|的取值范圍22.(10分)已知集合,,.(1)求;(2)若“”是“”的必要不充分條件,求實數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求出兩圓的圓心及半徑,求出圓心距,從而可得出結(jié)論.【詳解】解:圓的圓心為,半徑為,圓圓心為,半徑為,則兩圓圓心距,因為,所以兩圓相交.故選:A.2、C【解析】通過樣本中心點來求得正確答案.【詳解】,故,則,故.故選:C3、D【解析】連接,利用,化簡即可得到答案.【詳解】連接,如下圖.故選:D.4、B【解析】先分析充分性:假設(shè)特殊等比數(shù)列即可判斷;再分析充分性,由條件得恒成立,再對和進(jìn)行分類討論即可判斷.【詳解】先分析充分性:在等比數(shù)列中,,所以假設(shè),,所以,等比數(shù)列為遞減數(shù)列,故充分性不成立;分析必要性:若等比數(shù)列的公比為,且是遞增數(shù)列,所以恒成立,即恒成立,當(dāng),時,成立,當(dāng),時,不成立,當(dāng),時,不成立,當(dāng),時,不成立,當(dāng),時,成立,當(dāng),時,不成立,當(dāng),時,不恒成立,當(dāng),時,不恒成立,所以能使恒成立的只有:,和,,易知此時成立,所以必要性成立.故選:B.5、B【解析】根據(jù)向量和直線l的方向向量的關(guān)系即可求出點P到直線l的距離.【詳解】由題意,,,,,,到直線的距離為.故選:B.6、B【解析】根據(jù)題意得,進(jìn)而根據(jù)得數(shù)列是等比數(shù)列,公比為,首項為,再根據(jù)等比數(shù)列求和公式求解即可.【詳解】解:因為數(shù)列的前n項和為滿足,所以當(dāng)時,,解得,當(dāng)時,,即所以,解得或,因為,所以.所以,,所以當(dāng)時,,所以,即所以數(shù)列是等比數(shù)列,公比為,首項為,所以故選:B7、B【解析】運用不等式的性質(zhì)及舉反例的方法可求解.【詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B8、B【解析】求出直線與平行的等價條件,再利用充分條件、必要條件的定義判斷作答.【詳解】由解得或,當(dāng)時,與平行,當(dāng)時,與平行,則直線與直線平行等價于或,所以是直線與直線互相平行的充分而不必要條件.故選:B9、A【解析】由兩點坐標(biāo),求出直線的斜率,利用,結(jié)合傾斜角的范圍即可求解.【詳解】設(shè)直線AB的傾斜角為,因為,所以直線AB的斜率,即,因為,所以.故選:A10、D【解析】根據(jù)等比數(shù)列的定義,結(jié)合等比數(shù)列的通項公式進(jìn)行求解即可.【詳解】因為,所以有,因此數(shù)列是公比的等比數(shù)列,因為,所以,故選:D11、C【解析】利用導(dǎo)數(shù)公式及運算法則求得,再求解【詳解】因為,所以,所以故選:C12、D【解析】取AC的中點O,建立如圖所示的空間直角坐標(biāo)系,根據(jù)點到線距離的向量求法和投影的定義計算即可.【詳解】由題意知,,取AC的中點O,則,建立如圖所示的空間直角坐標(biāo)系,則,所以,所以在上的投影的長度為,故點C到直線距離為:.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)雙曲線方程求出,再根據(jù)雙曲線的定義可知,即可得到、,再由正弦定理計算可得;【詳解】解:因為雙曲線為,所以、,因為點P是雙曲線左支上一點且,所以,所以,,在中,由正弦定理可得,所以;故答案為:14、【解析】根據(jù)給定條件利用相互獨立事件、對立事件的概率公式計算作答.【詳解】依題意,這位考生至少得1個A對立事件為物理、政治科目考試都沒有得A,其概率為,所以這位考生至少得1個A的概率為.故答案為:15、②③④【解析】由拋物線過點可得拋物線的方程,求出焦點的坐標(biāo)及準(zhǔn)線方程,由拋物線的性質(zhì)可判斷①;求出直線的方程與拋物線聯(lián)立切線的坐標(biāo),進(jìn)而求出三角形的面積,判斷②;設(shè)直線方程為y-1=k(x-1),與y2=x聯(lián)立求得斜率,進(jìn)而可得在處的切線方程,從而判斷③;設(shè)直線的方程為拋物線聯(lián)立求出的坐標(biāo),同理求出的坐標(biāo),進(jìn)而求出直線的斜率,從而可判斷④【詳解】解:由拋物線過點,所以,所以,所以拋物線的方程為:;可得拋物線的焦點的坐標(biāo)為:,,準(zhǔn)線方程為:,對于①,由拋物線的性質(zhì)可得到焦點的距離為,故①錯誤;對于②,可得直線的斜率,所以直線的方程為:,代入拋物線的方程可得:,解得,所以,故②正確;對于③,依題意斜率存在,設(shè)直線方程為y-1=k(x-1),與y2=x聯(lián)立,得:ky2-y+1-k=0,=1-4k(1-k)=0,4k2-4k+1=0,解得k=,所以切線方程為x-2y+1=0,故③正確;對于④,設(shè)直線的方程為:,與拋物線聯(lián)立可得,所以,所以,代入直線中可得,即,,直線的方程為:,代入拋物線的方程,可得,代入直線的方程可得,所以,,所以為定值,故④正確故答案為:②③④.16、5【解析】根據(jù)題意和等比數(shù)列的求和公式,求得,結(jié)合求和公式,即可求解.【詳解】因為,若時,可得,故,所以,化簡得,整理得,解得或,因為,解得,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)待定系數(shù)法去求橢圓的標(biāo)準(zhǔn)方程即可;(2)待定系數(shù)法去求橢圓的標(biāo)準(zhǔn)方程即可.【小問1詳解】當(dāng)橢圓焦點在x軸上時,方程可設(shè)為,將點代入得,解之得,則所求橢圓方程為當(dāng)橢圓焦點在y軸上時,方程可設(shè)為,將點代入得,解之得,則所求橢圓方程為【小問2詳解】橢圓方程可設(shè)為,則,解之得,則橢圓方程為18、(1)證明見解析(2)【解析】建立空間直角坐標(biāo)系,計算出相關(guān)點的坐標(biāo),進(jìn)而計算出相關(guān)向量的坐標(biāo);(1)計算向量的數(shù)量積,,根據(jù)數(shù)量積結(jié)果為零,證明線線垂直,進(jìn)而證明線面垂直2;(2)求出平面PCD的法向量和平面PAC的法向量,根據(jù)向量的夾角公式即可求解.【小問1詳解】證明:因為平面ABCD,平面ABCD,平面ABCD,所以,,又因為,則以A為坐標(biāo)原點,分別以AB、AD、AP所在的直線為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,,,則,,所以,,又,平面PAC,平面PAC,∴平面PAC;【小問2詳解】解:由(1)可知平面PAC,可作為平面PAC的法向量,設(shè)平面PCD的法向量,因為,所以,即,不妨設(shè),得,又由圖示知二面角為銳角,所以二面角的正弦值為19、(1)或;(2).【解析】(1)解不含參數(shù)的一元二次不等式即可求出結(jié)果;(2)二次函數(shù)的恒成立問題需要對二次項系數(shù)是否為0進(jìn)行分類討論,即可求出結(jié)果.【詳解】(1)當(dāng)時,,即,解得或,所以,解集為或.(2)因為在上恒成立,①當(dāng)時,恒成立;②當(dāng)時,,解得,綜上,的取值范圍為.20、(1);(2)證明見解析.【解析】(1)由離心率、過點和橢圓關(guān)系可構(gòu)造方程求得,由此可得橢圓方程;(2)當(dāng)直線斜率不存在時,表示出兩點坐標(biāo),由兩點連線斜率公式表示出,整理可得直線為;當(dāng)直線斜率存在時,設(shè),與橢圓方程聯(lián)立可得韋達(dá)定理的形式,代入中整理可得,由此可得直線所過定點;綜合兩種情況可得直線過定點.【詳解】(1)橢圓過點,即,;,又,,橢圓的方程為:.(2)當(dāng)直線斜率不存在時,設(shè)直線方程為,則,則,,解得:,直線方程為;當(dāng)直線斜率存在時,設(shè)直線方程為,聯(lián)立方程組得:,設(shè),則,(*),則,將*式代入化簡可得:,即,整理得:,代入直線方程得:,即,聯(lián)立方程組,解得:,,直線恒過定點;綜上所述:直線恒過定點.【點睛】思路點睛:本題考查直線與橢圓綜合應(yīng)用中的直線過定點問題的求解,求解此類問題的基本思路如下:①假設(shè)直線方程,與橢圓方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達(dá)定理的形式;③利用韋達(dá)定理表示出已知中的等量關(guān)系,代入韋達(dá)定理可整理得到變量間的關(guān)系,從而化簡直線方程;④根據(jù)直線過定點的求解方法可求得結(jié)果.21、(1);(2)[,3].【解析】(1)由題可得,即求;(2)當(dāng)直線的斜率不存在或為0,易求,當(dāng)直線MN斜率存在且不為0時,設(shè)直線MN的方程為:,利用直線與圓相切可得,再聯(lián)立橢圓方程并應(yīng)用韋達(dá)定理求得,然后利用基本不等式即得.【小問1詳解】由題可得,∴??=2,??=∴橢圓C的方程為:;小問2詳解】當(dāng)直線MN斜率為0時,不妨取直線MN為??=,則,此時,則;當(dāng)直線MN斜率不存在,不妨取直線MN為x=,則,此時,則;當(dāng)直線MN斜率存在且不為0時,設(shè)直線MN的方程為:,,因為直線MN與圓相切,所以,即,又因為直線MN與橢圓C交于M,N兩點:由,得,則,所以MN中點T坐標(biāo)為,則,,所以又,當(dāng)且僅當(dāng),即取等號,∴|OT||MN|;綜上所述:|OT|?|MN|的取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度房地產(chǎn)面積測繪與房地產(chǎn)營銷合同3篇
- 二零二五年度宗教場所租賃合同樣本3篇
- Unit 3 Sports and Fitness Listening and Talking 說課稿-2024-2025學(xué)年高一英語人教版(2019)必修第一冊
- 冬季滑雪運動
- Unit 7 International charities-study skills 說課稿 2024-2025學(xué)年牛津譯林版八年級英語下冊
- 二零二五年度房地產(chǎn)開發(fā)前期合同翻譯與國際化服務(wù)合同3篇
- 貴州商學(xué)院《模具CAD》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州輕工職業(yè)技術(shù)學(xué)院《電子商務(wù)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度企業(yè)年金管理服務(wù)合同規(guī)范文本3篇
- 2024年九年級語文教學(xué)計劃方案(31篇)
- 幼兒園背景研究分析報告
- 圍墻維修 施工方案
- 創(chuàng)傷關(guān)節(jié)骨科年度總結(jié)
- 2022-2023學(xué)年江蘇省鹽城第一學(xué)期高一期末考試數(shù)學(xué)試卷及答案解析-普通用卷
- 醫(yī)師病理知識定期考核試題與答案
- 履約情況證明(共6篇)
- 礦井提升容器課件
- 云南省迪慶藏族自治州各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細(xì)
- 《潔凈工程項目定額》(征求意見稿)
- 城鎮(zhèn)燃?xì)庠O(shè)計規(guī)范
- 年零售藥店操作規(guī)程版
評論
0/150
提交評論