![河南省示范性高中2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁](http://file4.renrendoc.com/view/63fc0b0f981ca812d687f71959794c02/63fc0b0f981ca812d687f71959794c021.gif)
![河南省示范性高中2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁](http://file4.renrendoc.com/view/63fc0b0f981ca812d687f71959794c02/63fc0b0f981ca812d687f71959794c022.gif)
![河南省示范性高中2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁](http://file4.renrendoc.com/view/63fc0b0f981ca812d687f71959794c02/63fc0b0f981ca812d687f71959794c023.gif)
![河南省示范性高中2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁](http://file4.renrendoc.com/view/63fc0b0f981ca812d687f71959794c02/63fc0b0f981ca812d687f71959794c024.gif)
![河南省示范性高中2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁](http://file4.renrendoc.com/view/63fc0b0f981ca812d687f71959794c02/63fc0b0f981ca812d687f71959794c025.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河南省示范性高中2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,是雙曲線的左,右焦點(diǎn),經(jīng)過點(diǎn)且與x軸垂直的直線與雙曲線的一條漸近線相交于點(diǎn)A,且A在第三象限,四邊形為平行四邊形,為直線的傾斜角,若,則該雙曲線離心率的取值范圍是()A. B.C. D.2.當(dāng)圓的圓心到直線的距離最大時(shí),()A B.C. D.3.已知,為正實(shí)數(shù),且,則的最小值為()A. B.C. D.14.從2,4中選一個(gè)數(shù)字,從1,3,5中選兩個(gè)數(shù)字,組成無重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù)為()A.48 B.36C.24 D.185.如圖,在直三棱柱中,,,D為AB的中點(diǎn),點(diǎn)E在線段上,點(diǎn)F在線段上,則線段EF長的最小值為()A B.C.1 D.6.設(shè)是兩個(gè)非零向量,則“”是“夾角為鈍角”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.已知為偶函數(shù),且當(dāng)時(shí),,其中為的導(dǎo)數(shù),則不等式的解集為()A. B.C. D.8.在空間直角坐標(biāo)系中,,,若∥,則x的值為()A.3 B.6C.5 D.49.命題“,”的否定是()A., B.,C, D.,10.已知直線m經(jīng)過,兩點(diǎn),則直線m的斜率為()A.-2 B.C. D.211.已知拋物線的焦點(diǎn)為F,過F作斜率為2的直線l與拋物線交于A,B兩點(diǎn),若弦的中點(diǎn)到拋物線準(zhǔn)線的距離為3,則拋物線的方程為()A. B.C. D.12.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個(gè)高階等差數(shù)列,其前7項(xiàng)分別為1,5,11,21,37,61,95,則該數(shù)列的第8項(xiàng)為()A.99 B.131C.139 D.141二、填空題:本題共4小題,每小題5分,共20分。13.與同一條直線都相交的兩條直線的位置關(guān)系是________14.若p:存在,使是真命題,則實(shí)數(shù)a的取值范圍是______15.設(shè)雙曲線的焦點(diǎn)為,點(diǎn)為上一點(diǎn),,則為_____.16.已知向量,,若與垂直,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面橫線上,并解答.在中,內(nèi)角,,的對(duì)邊分別為,,,且___________.(1)求角的大??;(2)已知,,點(diǎn)在邊上,且,求線段的長.注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.18.(12分)已知,,其中.(1)求的值;(2)設(shè)(其中、為正整數(shù)),求的值.19.(12分)設(shè):實(shí)數(shù)滿足,:實(shí)數(shù)滿足(1)若,且為真,求實(shí)數(shù)的取值范圍;(2)若是的必要不充分條件,求實(shí)數(shù)的取值范圍20.(12分)已知數(shù)列的前項(xiàng)和為,且滿足,,成等比數(shù)列,.(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.21.(12分)已知:圓是的外接圓,邊所在直線的方程為,中線所在直線的方程為,直線與圓相切于點(diǎn).(1)求點(diǎn)和點(diǎn)的坐標(biāo);(2)求圓的方程.22.(10分)已知橢圓的離心率為,短軸長為2(1)求橢圓的方程;(2)設(shè)過點(diǎn)且斜率為的直線與橢圓交于不同的兩點(diǎn),,求當(dāng)?shù)拿娣e取得最大值時(shí)的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)雙曲線的幾何性質(zhì)和平行四邊形的性質(zhì)可知也在雙曲線的漸近線上,且在第一象限,從而由可知軸,所以在直角三角形中,,由,可得的范圍,進(jìn)而轉(zhuǎn)化為,的不等式,結(jié)合可得離心率的取值范圍【詳解】解:因?yàn)榻?jīng)過點(diǎn)且與軸垂直的直線與雙曲線的一條漸近線相交于點(diǎn),且在第三象限,四邊形為平行四邊形,所以由雙曲線的對(duì)稱性可知也在雙曲線的漸近線上,且在第一象限,由軸,可知軸,所以,在直角三角形中,,因?yàn)?,所以,,即,所以,即,即,故,所?故選:B2、C【解析】求出圓心坐標(biāo)和直線過定點(diǎn),當(dāng)圓心和定點(diǎn)的連線與直線垂直時(shí)滿足題意,再利用兩直線垂直,斜率乘積為-1求解即可.【詳解】解:因?yàn)閳A的圓心為,半徑,又因?yàn)橹本€過定點(diǎn)A(-1,1),故當(dāng)與直線垂直時(shí),圓心到直線的距離最大,此時(shí)有,即,解得.故選:C.3、D【解析】利用基本不等式可求的最小值.【詳解】可化為,由基本不等式可得,故,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故的最小值為1,故選:D.4、B【解析】直接利用乘法分步原理分三步計(jì)算即得解.【詳解】從中選一個(gè)數(shù)字,有種方法;從中選兩個(gè)數(shù)字,有種方法;組成無重復(fù)數(shù)字的三位數(shù),有個(gè).故選:B5、B【解析】根據(jù)給定條件建立空間直角坐標(biāo)系,令,用表示出點(diǎn)E,F(xiàn)坐標(biāo),再由兩點(diǎn)間距離公式計(jì)算作答.【詳解】依題意,兩兩垂直,建立如圖所示的空間直角坐標(biāo)系,則,,設(shè),則,設(shè),有,線段EF長最短,必滿足,則有,解得,即,因此,,當(dāng)且僅當(dāng)時(shí)取“=”,所以線段EF長的最小值為.故選:B6、B【解析】因?yàn)闀r(shí),夾角為鈍角或平角;而當(dāng)夾角為鈍角時(shí),成立,所以“”是“夾角為鈍角”的必要不充分條件.故選B考點(diǎn):1向量的數(shù)量積;2充分必要條件7、A【解析】根據(jù)已知不等式和要求解的不等式特征,構(gòu)造函數(shù),將問題轉(zhuǎn)化為解不等式.通過已知條件研究g(x)的奇偶性和單調(diào)性即可解該不等式.【詳解】令,則根據(jù)題意可知,,∴g(x)是奇函數(shù),∵,∴當(dāng)時(shí),,單調(diào)遞減,∵g(x)是奇函數(shù),g(0)=0,∴g(x)在R上單調(diào)遞減,由不等式得,.故選:A.8、D【解析】依題意可得,即可得到方程組,解得即可;【詳解】解:依題意,即,所以,解得故選:D9、D【解析】由含量詞命題否定的定義,寫出命題的否定即可【詳解】命題“,”的否定是:,,故選:D.10、A【解析】根據(jù)斜率公式求得正確答案.【詳解】直線的斜率為:.故選:A11、B【解析】設(shè)出直線,并與拋物線聯(lián)立,得到,再根據(jù)拋物線的定義建立等式即可求解.【詳解】因?yàn)橹本€l的方程為,即,由消去y,得,設(shè),則,又因?yàn)橄业闹悬c(diǎn)到拋物線的準(zhǔn)線的距離為3,所以,而,所以,故,解得,所以拋物線的方程為故選:B.12、D【解析】根據(jù)題中所給高階等差數(shù)列定義,找出其一般規(guī)律即可求解.【詳解】設(shè)該高階等差數(shù)列的第8項(xiàng)為,根據(jù)所給定義,用數(shù)列的后一項(xiàng)減去前一項(xiàng)得到一個(gè)數(shù)列,得到的數(shù)列也用后一項(xiàng)減去前一項(xiàng)得到一個(gè)數(shù)列,即得到了一個(gè)等差數(shù)列,如圖:由圖可得,則.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、平行,相交或者異面【解析】由空間中兩直線的位置關(guān)系求解即可【詳解】由題意與同一條直線都相交的兩條直線的位置關(guān)系可能是:平行,相交或者異面,故答案為:平行,相交或者異面,14、【解析】將問題分離參數(shù)得到存在,使成立,可得結(jié)論.【詳解】存在,使,即存在,使,所以故答案為:15、【解析】將方程化為雙曲線的標(biāo)準(zhǔn)方程,再利用雙曲線的定義進(jìn)行求解.【詳解】將化為,所以,,由雙曲線的定義,得:,即,所以或(舍)故答案為:.16、【解析】根據(jù)與垂直,可知,根據(jù)空間向量的數(shù)量積運(yùn)算可求出的值,結(jié)合向量坐標(biāo)求向量模的求法,即可得出結(jié)果.【詳解】解:與垂直,,則,解得:,,則,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)若選①,則根據(jù)正弦定理,邊化角,結(jié)合二倍角公式,求得,可得答案;若選②,則根據(jù)余弦定理和三角形面積公式,將化簡,求得,可得答案;若選③,則切化弦,化簡可得到的值,求得答案;(2)由余弦定理求出,進(jìn)而求得,設(shè),,在中用余弦定理列出方程,求得答案.【小問1詳解】若選①,則根據(jù)正弦定理可得:,由于,,故,則;若選②,則,即,則,而,故;若選③,則,即,則,而,故;【小問2詳解】如圖示:,故,故,在中,設(shè),則,則,即,解得,或(舍去)故.18、(1);(2).【解析】(1),,寫出的展開式通項(xiàng),由可得出關(guān)于的方程,解出的值,再利用賦值法可求得所求代數(shù)式的值;(2)寫出的展開式,求出、的值,即可求得的值.【小問1詳解】解:設(shè),,的展開式通項(xiàng)為,所以,,即,,解得,所以,.【小問2詳解】解:,,,因此,19、(1)(2)【解析】(1)根據(jù)二次不等式與分式不等式的求解方法求得命題p,q為真時(shí)實(shí)數(shù)x的取值范圍,再求交集即可;(2)先求得,再根據(jù)是的必要不充分條件可得,再根據(jù)集合包含關(guān)系,根據(jù)區(qū)間端點(diǎn)列不等式求解即可【小問1詳解】當(dāng)時(shí),,解得,即p為真時(shí),實(shí)數(shù)x的取值范圍為.由,解得,即q為真時(shí),實(shí)數(shù)x的取值范圍為若為真,則,解得實(shí)數(shù)x的取值范圍為【小問2詳解】若p是q的必要不充分條件,則且設(shè),,則,又由,得,因?yàn)?,則,有,解得因此a的取值范圍為20、(1);(2).【解析】(1)由可得數(shù)列是公差為2的等差數(shù)列,再由,,成等比數(shù)列,列方程可求出,從而可求得數(shù)列的通項(xiàng)公式;(2)由(1)可得,然后利用裂項(xiàng)相消求和法可求出【詳解】解:(1)由,可得,即數(shù)列是公差為2的等差數(shù)列.所以,,.由題意得,解得,所以.(2)由(1)可得,所以數(shù)列的前項(xiàng)和.21、(1)A(1,7),(2)【解析】(1)與的的交點(diǎn)為點(diǎn)D,與的的交點(diǎn)為點(diǎn)A,聯(lián)立解方程即可得出結(jié)果.(2)設(shè)圓P的圓心P為,由,,計(jì)算求解即可得出點(diǎn)坐標(biāo),由求得半徑,進(jìn)而可得出圓的方程.【小問1詳解】由題可得:與的的交點(diǎn)為點(diǎn)D,故由,解得:,故與的的交點(diǎn)為點(diǎn)A,,解得:,故A(1,7)【小問2詳解】設(shè)圓P的圓心P為,由與圓相切于點(diǎn)A,且的斜率為,則即,即,①又圓P為的外接圓,則BC為圓P的弦,又邊BC所在直線的科率為,故根據(jù)垂徑定理,有進(jìn)而,即②,聯(lián)立①②,解得:,即故,則圓P的方程為:.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 歷史街區(qū)石材裝修配送協(xié)議
- 親子酒店裝修項(xiàng)目合同
- 校園裝修合同樣本-@-1
- 鎮(zhèn)江彩鋼瓦防腐施工方案
- 木材加工配送合同模板
- 化工原料特種運(yùn)輸協(xié)議
- 2025年度網(wǎng)絡(luò)安全技術(shù)顧問聘用協(xié)議
- 國際旅游業(yè)務(wù)居間協(xié)議
- 魚塘合作管理方案
- 象山消防通風(fēng)排煙施工方案
- 徐金桂行政法與行政訴訟法新講義
- 瀝青拌合設(shè)備結(jié)構(gòu)認(rèn)知
- GB/T 13234-2018用能單位節(jié)能量計(jì)算方法
- (課件)肝性腦病
- 北師大版五年級(jí)上冊(cè)數(shù)學(xué)教學(xué)課件第5課時(shí) 人民幣兌換
- 工程回訪記錄單
- 住房公積金投訴申請(qǐng)書
- 高考物理二輪專題課件:“配速法”解決擺線問題
- 檢驗(yàn)科生物安全風(fēng)險(xiǎn)評(píng)估報(bào)告
- 京頤得移動(dòng)門診產(chǎn)品輸液
- 如何做一名合格的帶教老師PPT精選文檔
評(píng)論
0/150
提交評(píng)論