版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023屆山西省晉中市四校高三3月總復(fù)習(xí)質(zhì)檢數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合(),若集合,且對(duì)任意的,存在使得,其中,,則稱(chēng)集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.2.點(diǎn)是單位圓上不同的三點(diǎn),線段與線段交于圓內(nèi)一點(diǎn)M,若,則的最小值為()A. B. C. D.3.下列結(jié)論中正確的個(gè)數(shù)是()①已知函數(shù)是一次函數(shù),若數(shù)列通項(xiàng)公式為,則該數(shù)列是等差數(shù)列;②若直線上有兩個(gè)不同的點(diǎn)到平面的距離相等,則;③在中,“”是“”的必要不充分條件;④若,則的最大值為2.A.1 B.2 C.3 D.04.已知平行于軸的直線分別交曲線于兩點(diǎn),則的最小值為()A. B. C. D.5.對(duì)于函數(shù),定義滿足的實(shí)數(shù)為的不動(dòng)點(diǎn),設(shè),其中且,若有且僅有一個(gè)不動(dòng)點(diǎn),則的取值范圍是()A.或 B.C.或 D.6.設(shè)是定義在實(shí)數(shù)集上的函數(shù),滿足條件是偶函數(shù),且當(dāng)時(shí),,則,,的大小關(guān)系是()A. B. C. D.7.如圖所示,用一邊長(zhǎng)為的正方形硬紙,按各邊中點(diǎn)垂直折起四個(gè)小三角形,做成一個(gè)蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為()A. B.C. D.8.設(shè)點(diǎn),P為曲線上動(dòng)點(diǎn),若點(diǎn)A,P間距離的最小值為,則實(shí)數(shù)t的值為()A. B. C. D.9.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.10.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列對(duì)這類(lèi)高階等差數(shù)列的研究,在楊輝之后一般稱(chēng)為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項(xiàng)分別為1,4,8,14,23,36,54,則該數(shù)列的第19項(xiàng)為()(注:)A.1624 B.1024 C.1198 D.156011.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.12.已知函數(shù),關(guān)于的方程R)有四個(gè)相異的實(shí)數(shù)根,則的取值范圍是(
)A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在回歸分析的問(wèn)題中,我們可以通過(guò)對(duì)數(shù)變換把非線性回歸方程,()轉(zhuǎn)化為線性回歸方程,即兩邊取對(duì)數(shù),令,得到.受其啟發(fā),可求得函數(shù)()的值域是_________.14.已知內(nèi)角的對(duì)邊分別為外接圓的面積為,則的面積為_(kāi)________.15.某學(xué)習(xí)小組有名男生和名女生.若從中隨機(jī)選出名同學(xué)代表該小組參加知識(shí)競(jìng)賽,則選出的名同學(xué)中恰好名男生名女生的概率為_(kāi)__________.16.若的展開(kāi)式中所有項(xiàng)的系數(shù)之和為,則______,含項(xiàng)的系數(shù)是______(用數(shù)字作答).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當(dāng)時(shí),恒有成立.18.(12分)2019年春節(jié)期間,某超市準(zhǔn)備舉辦一次有獎(jiǎng)促銷(xiāo)活動(dòng),若顧客一次消費(fèi)達(dá)到400元?jiǎng)t可參加一次抽獎(jiǎng)活動(dòng),超市設(shè)計(jì)了兩種抽獎(jiǎng)方案.方案一:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.方案二:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎(jiǎng),且顧客有放回地抽取3次.(1)現(xiàn)有兩位顧客均獲得抽獎(jiǎng)機(jī)會(huì),且都按方案一抽獎(jiǎng),試求這兩位顧客均獲得180元返金券的概率;(2)若某顧客獲得抽獎(jiǎng)機(jī)會(huì).①試分別計(jì)算他選擇兩種抽獎(jiǎng)方案最終獲得返金券的數(shù)學(xué)期望;②為了吸引顧客消費(fèi),讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎(jiǎng)方案進(jìn)行促銷(xiāo)活動(dòng)?19.(12分)在中,角的對(duì)邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長(zhǎng).20.(12分)已知圓O經(jīng)過(guò)橢圓C:的兩個(gè)焦點(diǎn)以及兩個(gè)頂點(diǎn),且點(diǎn)在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且,求直線l的傾斜角.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過(guò)伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)說(shuō)明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;(2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn)和,且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:①點(diǎn)的極角;②面積的取值范圍.22.(10分)已知函數(shù)(1)解不等式;(2)若函數(shù),若對(duì)于任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)題目中的基底定義求解.【詳解】因?yàn)椋?,,,,,所以能作為集合的基底,故選:C【點(diǎn)睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.2、D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),,的最小值為,故選:D.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題.3、B【解析】
根據(jù)等差數(shù)列的定義,線面關(guān)系,余弦函數(shù)以及基本不等式一一判斷即可;【詳解】解:①已知函數(shù)是一次函數(shù),若數(shù)列的通項(xiàng)公式為,可得為一次項(xiàng)系數(shù)),則該數(shù)列是等差數(shù)列,故①正確;②若直線上有兩個(gè)不同的點(diǎn)到平面的距離相等,則與可以相交或平行,故②錯(cuò)誤;③在中,,而余弦函數(shù)在區(qū)間上單調(diào)遞減,故“”可得“”,由“”可得“”,故“”是“”的充要條件,故③錯(cuò)誤;④若,則,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),故④正確;綜上可得正確的有①④共2個(gè);故選:B【點(diǎn)睛】本題考查命題的真假判斷,主要是正弦定理的運(yùn)用和等比數(shù)列的求和公式、等差數(shù)列的定義和不等式的性質(zhì),考查運(yùn)算能力和推理能力,屬于中檔題.4、A【解析】
設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查化簡(jiǎn)整理的運(yùn)算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.5、C【解析】
根據(jù)不動(dòng)點(diǎn)的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫(huà)出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當(dāng)時(shí),,則在內(nèi)單調(diào)遞增;當(dāng)時(shí),,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個(gè)不動(dòng)點(diǎn),可得得或,解得或.故選:C【點(diǎn)睛】本題考查了函數(shù)新定義的應(yīng)用,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應(yīng)用,屬于中檔題.6、C【解析】∵y=f(x+1)是偶函數(shù),∴f(-x+1)=f(x+1),即函數(shù)f(x)關(guān)于x=1對(duì)稱(chēng).
∵當(dāng)x≥1時(shí),為減函數(shù),∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故選C7、D【解析】因?yàn)榈俺驳牡酌媸沁呴L(zhǎng)為的正方形,所以過(guò)四個(gè)頂點(diǎn)截雞蛋所得的截面圓的直徑為,又因?yàn)殡u蛋的體積為,所以球的半徑為,所以球心到截面的距離,而截面到球體最低點(diǎn)距離為,而蛋巢的高度為,故球體到蛋巢底面的最短距離為.點(diǎn)睛:本題主要考查折疊問(wèn)題,考查球體有關(guān)的知識(shí).在解答過(guò)程中,如果遇到球體或者圓錐等幾何體的內(nèi)接或外接幾何體的問(wèn)題時(shí),可以采用軸截面的方法來(lái)處理.也就是畫(huà)出題目通過(guò)球心和最低點(diǎn)的截面,然后利用弦長(zhǎng)和勾股定理來(lái)解決.球的表面積公式和體積公式是需要熟記的.8、C【解析】
設(shè),求,作為的函數(shù),其最小值是6,利用導(dǎo)數(shù)知識(shí)求的最小值.【詳解】設(shè),則,記,,易知是增函數(shù),且的值域是,∴的唯一解,且時(shí),,時(shí),,即,由題意,而,,∴,解得,.∴.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)的應(yīng)用,考查用導(dǎo)數(shù)求最值.解題時(shí)對(duì)和的關(guān)系的處理是解題關(guān)鍵.9、D【解析】
由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.10、B【解析】
根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項(xiàng)公式和前項(xiàng)和,利用累加法求得數(shù)列的通項(xiàng)公式,進(jìn)而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設(shè)該數(shù)列為,令,設(shè)的前項(xiàng)和為,又令,設(shè)的前項(xiàng)和為.易,,進(jìn)而得,所以,則,所以,所以.故選:B【點(diǎn)睛】本小題主要考查新定義數(shù)列的理解和運(yùn)用,考查累加法求數(shù)列的通項(xiàng)公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.11、A【解析】
利用已知條件畫(huà)出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點(diǎn)睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵.12、A【解析】=,當(dāng)時(shí)時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,且當(dāng),當(dāng),
當(dāng)時(shí),恒成立,時(shí),單調(diào)遞增且,方程R)有四個(gè)相異的實(shí)數(shù)根.令=則,,即.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
轉(zhuǎn)化()為,即得解.【詳解】由題意:().故答案為:【點(diǎn)睛】本題考查類(lèi)比法求函數(shù)的值域,考查了學(xué)生邏輯推理,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.14、【解析】
由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內(nèi)角,從而有,于是可得三角形邊長(zhǎng),可得面積.【詳解】設(shè)外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【點(diǎn)睛】本題考查正弦定理,利用正弦定理求出三角形的內(nèi)角,然后可得邊長(zhǎng),從而得面積,掌握正弦定理是解題關(guān)鍵.15、【解析】
從7人中選出2人則總數(shù)有,符合條件數(shù)有,后者除以前者即得結(jié)果【詳解】從7人中隨機(jī)選出2人的總數(shù)有,則記選出的名同學(xué)中恰好名男生名女生的概率為事件,∴故答案為:【點(diǎn)睛】組合數(shù)與概率的基本運(yùn)用,熟悉組合數(shù)公式16、【解析】的展開(kāi)式中所有項(xiàng)的系數(shù)之和為,,,項(xiàng)的系數(shù)是,故答案為(1),(2).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)2;(2);(3)證明見(jiàn)解析【解析】
(1)先求出函數(shù)的定義域和導(dǎo)數(shù),由已知函數(shù)在處取得極值,得到,即可求解的值;(2)由(1)得,定義域?yàn)椋?,和三種情況討論,分別求得函數(shù)的最小值,即可得到結(jié)論;(3)由,得到,把,只需證,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由,定義域?yàn)椋瑒t,因?yàn)楹瘮?shù)在處取得極值,所以,即,解得,經(jīng)檢驗(yàn),滿足題意,所以.(2)由(1)得,定義域?yàn)?,?dāng)時(shí),有,在區(qū)間上單調(diào)遞增,最小值為,當(dāng)時(shí),由得,且,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;所以在區(qū)間上單調(diào)遞增,最小值為,當(dāng)時(shí),則,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;所以在處取得最小值,綜上可得:當(dāng)時(shí),在區(qū)間上的最小值為1,當(dāng)時(shí),在區(qū)間上的最小值為.(3)由得,當(dāng)時(shí),,則,欲證,只需證,即證,即,設(shè),則,當(dāng)時(shí),,在區(qū)間上單調(diào)遞增,當(dāng)時(shí),,即,故,即當(dāng)時(shí),恒有成立.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,以及不等式的證明,著重考查了轉(zhuǎn)化與化歸思想、分類(lèi)討論、及邏輯推理能力與計(jì)算能力,對(duì)于此類(lèi)問(wèn)題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.18、(1)(2)①②第一種抽獎(jiǎng)方案.【解析】
(1)方案一中每一次摸到紅球的概率為,每名顧客有放回的抽3次獲180元返金劵的概率為,根據(jù)相互獨(dú)立事件的概率可知兩顧客都獲得180元返金劵的概率(2)①分別計(jì)算方案一,方案二顧客獲返金卷的期望,方案一列出分布列計(jì)算即可,方案二根據(jù)二項(xiàng)分布計(jì)算期望即可②根據(jù)①得出結(jié)論.【詳解】(1)選擇方案一,則每一次摸到紅球的概率為設(shè)“每位顧客獲得180元返金劵”為事件A,則所以?xún)晌活櫩途@得180元返金劵的概率(2)①若選擇抽獎(jiǎng)方案一,則每一次摸到紅球的概率為,每一次摸到白球的概率為.設(shè)獲得返金劵金額為元,則可能的取值為60,100,140,180.則;;;.所以選擇抽獎(jiǎng)方案一,該顧客獲得返金劵金額的數(shù)學(xué)期望為(元)若選擇抽獎(jiǎng)方案二,設(shè)三次摸球的過(guò)程中,摸到紅球的次數(shù)為,最終獲得返金劵的金額為元,則,故所以選擇抽獎(jiǎng)方案二,該顧客獲得返金劵金額的數(shù)學(xué)期望為(元).②即,所以該超市應(yīng)選擇第一種抽獎(jiǎng)方案【點(diǎn)睛】本題主要考查了古典概型,相互獨(dú)立事件的概率,二項(xiàng)分布,期望,及概率知識(shí)在實(shí)際問(wèn)題中的應(yīng)用,屬于中檔題.19、(1);(2)【解析】
(1)由正弦定理可得,,化簡(jiǎn)并結(jié)合,可求得三者間的關(guān)系,代入余弦定理可求得;(2)由(1)可求得,再結(jié)合三角形的面積公式,可求出,從而可求出答案.【詳解】(1)因?yàn)?所以,整理得:.因?yàn)?所以,所以.由余弦定理可得.(2)由(1)知,則,因?yàn)榈拿娣e是,所以,即,解得,則.故的周長(zhǎng)為:.【點(diǎn)睛】本題考查了正弦定理、余弦定理在解三角形中的應(yīng)用,考查了三角形面積公式的應(yīng)用,屬于基礎(chǔ)題.20、(1);(2)或【解析】
(1)先由題意得出,可得出與的等量關(guān)系,然后將點(diǎn)的坐標(biāo)代入橢圓的方程,可求出與的值,從而得出橢圓的方程;(2)對(duì)直線的斜率是否存在進(jìn)行分類(lèi)討論,當(dāng)直線的斜率不存在時(shí),可求出,然后進(jìn)行檢驗(yàn);當(dāng)直線的斜率存在時(shí),可設(shè)直線的方程為,設(shè)點(diǎn),先由直線與圓相切得出與之間的關(guān)系,再將直線的方程與橢圓的方程聯(lián)立,由韋達(dá)定理,利用弦長(zhǎng)公式并結(jié)合條件得出的值,從而求出直線的傾斜角.【詳解】(1)由題可知圓只能經(jīng)過(guò)橢圓的上下頂點(diǎn),所以橢圓焦距等于短軸長(zhǎng),可得,又點(diǎn)在橢圓上,所以,解得,即橢圓的方程為.(2)圓的方程為,當(dāng)直線不存在斜率時(shí),解得,不符合題意;當(dāng)直線存在斜率時(shí),設(shè)其方程為,因?yàn)橹本€與圓相切,所以,即.將直線與橢圓的方程聯(lián)立,得:,判別式,即,設(shè),則,所以,解得,所以直線的傾斜角為或.【點(diǎn)睛】求橢圓標(biāo)準(zhǔn)方程的方法一般為待定系數(shù)法,根據(jù)條件確定關(guān)于的方程組,解出,從而寫(xiě)出橢圓的標(biāo)準(zhǔn)方程.解決直線與橢圓的位置關(guān)系的相關(guān)問(wèn)題,其常規(guī)思路是先把直線方程與橢圓方程聯(lián)立,消元、化簡(jiǎn),然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問(wèn)題.涉及弦中點(diǎn)的問(wèn)題常常用“點(diǎn)差法”解決,往往會(huì)更簡(jiǎn)單.21、(1)曲線為圓心在原點(diǎn),半徑為2的圓.的極坐標(biāo)方程為(2)①②【解析】
(1)求得曲線伸縮變換后所得的參數(shù)方程,消參后求得的普通方程,判斷出對(duì)應(yīng)的曲線,并將的普通方程轉(zhuǎn)化為極坐標(biāo)方程.(2)①將的極角代入直線的極坐標(biāo)方程,由此求得點(diǎn)的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進(jìn)而求得,從而求得點(diǎn)的極角.②解法一:利用曲線的參數(shù)方程,求得曲線上的點(diǎn)到直線的距離的表達(dá)式,結(jié)合三角函數(shù)的知識(shí)求得的最小值和最大值,由此求得面積的取值
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023-2024學(xué)年人教版(2015)小學(xué)信息技術(shù)四年級(jí)下冊(cè)文字處理初嘗試(說(shuō)課稿)
- 2024某影視公司與某廣告公司關(guān)于影視植入廣告服務(wù)的合同
- 1 《沁園春·長(zhǎng)沙》 (說(shuō)課稿)-2024-2025學(xué)年高一語(yǔ)文同步說(shuō)課稿與知識(shí)梳理(統(tǒng)編版必修上冊(cè))
- 5G網(wǎng)絡(luò)建設(shè)與優(yōu)化協(xié)議
- 2024年革新版:基于VR技術(shù)的虛擬物流培訓(xùn)服務(wù)合同
- 2024陜西餐飲業(yè)勞動(dòng)合同范本及服務(wù)條款3篇
- 2《學(xué)會(huì)溝通交流》第1課時(shí)說(shuō)課稿-2024-2025學(xué)年道德與法治五年級(jí)上冊(cè)統(tǒng)編版
- 11變廢為寶有妙招(說(shuō)課稿)-部編版道德與法治四年級(jí)上冊(cè)
- 2025年度文化產(chǎn)業(yè)融合發(fā)展合同補(bǔ)充協(xié)議3篇
- 《聲音的利用》課件
- 九年級(jí)數(shù)學(xué)上冊(cè)期末復(fù)習(xí)綜合測(cè)試題(含答案)
- 2025年月度工作日歷含農(nóng)歷節(jié)假日電子表格版
- 機(jī)動(dòng)車(chē)查驗(yàn)員技能理論考試題庫(kù)大全-上(單選題部分)
- 監(jiān)理人員安全生產(chǎn)培訓(xùn)
- 2024-2030年中國(guó)電力檢修行業(yè)運(yùn)行狀況及投資前景趨勢(shì)分析報(bào)告
- 河北省百師聯(lián)盟2023-2024學(xué)年高二上學(xué)期期末大聯(lián)考?xì)v史試題(解析版)
- 中央空調(diào)系統(tǒng)運(yùn)行與管理考核試卷
- 核電工程排水隧道專(zhuān)項(xiàng)施工方案
- 山西省呂梁市2023-2024學(xué)年高二上學(xué)期期末考試數(shù)學(xué)試題(解析版)
- 2024年市場(chǎng)運(yùn)營(yíng)部職責(zé)樣本(3篇)
- 2024體育活動(dòng)區(qū)鋪沙子(合同)協(xié)議
評(píng)論
0/150
提交評(píng)論