版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆遼寧省葫蘆島市八中數學高二上期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,,則有()A. B.C. D.2.在四面體OABC中,,,,則與AC所成角的大小為()A.30° B.60°C.120° D.150°3.函數的遞增區(qū)間是()A. B.和C. D.和4.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件5.已知角的終邊經過點,則,的值分別為A., B.,C., D.,6.在中國,周朝時期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并證明此定理的為公元前世紀古希臘的畢達哥拉斯學派,他們用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和.若一個直角三角形的斜邊長等于則這個直角三角形周長的最大值為()A. B.C. D.7.如圖,在四棱錐中,底面ABCD是平行四邊形,已知,,,,則()A. B.C. D.8.已知空間、、、四點共面,且其中任意三點均不共線,設為空間中任意一點,若,則()A.2 B.C.1 D.9.空間四點共面,但任意三點不共線,若為該平面外一點且,則實數的值為()A. B.C. D.10.方程所表示的曲線為()A.射線 B.直線C.射線或直線 D.無法確定11.已知是雙曲線:的右焦點,是坐標原點,過作的一條漸近線的垂線,垂足為,并交軸于點.若,則的離心率為()A. B.C.2 D.12.已知拋物線的焦點為F,且點F與圓上點的距離的最大值為6,則拋物線的準線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知橢圓C1和雙曲線C2交于P1、P2、P3、P4四個點,F1和F2分別是C1的左右焦點,也是C2的左右焦點,并且六邊形是正六邊形.若橢圓C1的方程為,則雙曲線方程為______.14.已知函數的單調遞減區(qū)間是,則的值為______.15.已知拋物線的焦點為,定點,若直線與拋物線相交于、兩點(點在、中間),且與拋物線的準線交于點,若,則的長為______.16.若,且,則_____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,斜率為的動直線與橢圓交于A,B兩點,且直線與圓相切.(1)若,求直線的方程;(2)求三角形的面積的取值范圍.18.(12分)銳角中滿足,其中分別為內角的對邊(I)求角;(II)若,求的取值范圍19.(12分)已知數列的前n項積,數列為等差數列,且,(1)求與的通項公式;(2)若,求數列的前n項和20.(12分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.(1)求證:平面平面;(2)若,求異面直線與所成角余弦值;(3)在線段上是否存在一點,使二面角大小為?若存在,請指出點的位置,若不存在,請說明理由.21.(12分)已知橢圓C:(a>b>0)的離心率e為,點在橢圓上(1)求橢圓C的方程;(2)若A、B為橢圓的左右頂點,過點(1,0)的直線交橢圓于M、N兩點,設直線AM、BN的斜率分別為,求證為定值22.(10分)某廠接受了一項加工業(yè)務,加工出來的產品(單位:件)按標準分為A,B,C,D四個等級.加工業(yè)務約定:對于A級品、B級品、C級品,廠家每件分別收取加工費90元,50元,20元;對于D級品,廠家每件要賠償原料損失費50元.該廠有甲、乙兩個分廠可承接加工業(yè)務.甲分廠加工成本費為25元/件,乙分廠加工成本費為20元/件.廠家為決定由哪個分廠承接加工業(yè)務,在兩個分廠各試加工了100件這種產品,并統(tǒng)計了這些產品的等級,整理如下:甲分廠產品等級的頻數分布表等級ABCD頻數40202020乙分廠產品等級的頻數分布表等級ABCD頻數28173421(1)分別估計甲、乙兩分廠加工出來的一件產品為A級品的概率;(2)分別求甲、乙兩分廠加工出來的100件產品的平均利潤,以平均利潤為依據,廠家應選哪個分廠承接加工業(yè)務?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】對待比較的代數式進行作差,利用不等式基本性質,即可判斷大小.【詳解】因為,又,,故,則,即;因為,又,,故,則;綜上所述:.故選:D.2、B【解析】以為空間的一個基底,求出空間向量求的夾角即可判斷作答.【詳解】在四面體OABC中,不共面,則,令,依題意,,設與AC所成角的大小為,則,而,解得,所以與AC所成角的大小為.故選:B3、C【解析】求導后,由可解得結果.【詳解】因為的定義域為,,由,得,解得,所以的遞增區(qū)間為.故選:C.【點睛】本題考查了利用導數求函數的增區(qū)間,屬于基礎題.4、B【解析】根據充分條件、必要條件的定義判斷即可;【詳解】解:由,得,反之不成立,如,,滿足,但是不滿足,故“”是“”的充分不必要條件故選:B5、C【解析】利用任意角的三角函數的定義:,,,代入計算即可得到答案【詳解】由于角的終邊經過點,則,,(為坐標原點),所以由任意角的三角函數的定義:,.故答案選C【點睛】本題考查任意角的三角函數的定義,解決此類問題的關鍵是掌握牢記三角函數定義并能夠熟練應用,屬于基礎題6、C【解析】設直角三角形的兩條直角邊邊長分別為,則,根據基本不等式求出的最大值后,可得三角形周長的最大值.【詳解】設直角三角形的兩條直角邊邊長分別為,則.因為,所以,所以,當且僅當時,等號成立.故這個直角三角形周長的最大值為故選:C7、A【解析】利用空間向量加法法則直接求解【詳解】連接BD,如圖,則故選:A8、B【解析】根據空間四點共面的充要條件代入即可解決.【詳解】,即整理得由、、、四點共面,且其中任意三點均不共線,可得,解之得故選:B9、A【解析】由空間向量共面定理構造方程求得結果.【詳解】空間四點共面,但任意三點不共線,,解得:.故選:A.10、C【解析】將方程化為或,由此可得所求曲線.【詳解】由得:或,即或,方程所表示的曲線為射線或直線.故選:C.11、A【解析】由條件建立a,b,c的關系,由此可求離心率的值.【詳解】設,則,∵,∴,∴,∴,∴,∴,∴離心率,故選:A.12、D【解析】先求得拋物線的焦點坐標,再根據點F與圓上點的距離的最大值為6求解.【詳解】因為拋物線的焦點為F,且點F與圓上點的距離的最大值為6,所以,解得,所以拋物線準線方程為,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先根據橢圓的方程求得焦點坐標,然后根據為正六邊形求得點的坐標,即點在雙曲線上,然后解出方程即可【詳解】設雙曲線的方程為:根據橢圓的方程可得:又為正六邊形,則點的坐標為:則點在雙曲線上,可得:又解得:故答案為:14、【解析】先求出,由題設易知是的解集,利用根與系數關系求m、n,進而求的值.【詳解】由題設,,由單調遞減區(qū)間是,∴的解集為,則是的解集,∴,可得,故.故答案為:15、【解析】分別過點、作、垂直于拋物線的準線于、,則,求出直線的方程,可求得拋物線的焦點的坐標,可得出拋物線的標準方程,再將直線的方程與拋物線的方程聯立,求出點的縱坐標,利用拋物線的定義可求得線段的長.【詳解】如圖,分別過點、作、垂直于拋物線的準線于、,則,由得,所以,,又,所以,直線的方程為,所以,,則,則拋物線的方程為,設點的縱坐標為,由,得或,因為點在、之間,則,所以,.故答案為:.16、【解析】由,可得,,,從而利用換底公式及對數的運算性質即可求解.【詳解】解:因為,所以,,,又,所以,所以,所以,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)設直線,利用圓心到直線的距離等于半徑,即可得到方程,求出,即可得解;(2)設,,,利用圓心到直線的距離等于半徑,得到,再聯立直線與橢圓方程,消元列出韋達定理,利用弦長公式表示出,再根據及基本不等式求出,最后再計算直線斜率不存在時三角形的面積,即可得解;【小問1詳解】解:圓,圓心為,半徑;設直線,即,則,解得,所以或;【小問2詳解】解:因為直線的斜率存在,設,,,即,則,所以,即,聯立,消元整理得,所以,,所以所以因為,所以,當且僅當,即時取等號,所以,當軸時,取,,則,此時,所以;18、(I);(II)【解析】(I)由正弦定理邊角互化并整理得,進而由余弦定理得;(II)正弦定理得,故,再根據三角恒等變換得,由于銳角中,,進而根據三角函數性質求得答案.【詳解】解:(I)由正弦定理得所以,即,所以,因為銳角中,,所以;(II)因為,,所以所以,因為,所以,所以,所以,所以19、(1),.(2).【解析】(1)由已知得,,兩式相除得,由已知得,求得數列的公差為,由等差數列的通項公式可求得;(2)運用錯位相減法可求得.【小問1詳解】解:因為數列的前n項積,所以,所以,兩式相除得,因為數列為等差數列,且,,所以,即,所以數列的公差為,所以,所以,【小問2詳解】解:由(1)得,所以,,所以,所以.20、(1)證明見解析;(2);(3)存在,點在線段上位于靠近點的四等分點處.【解析】(1)證明平面,利用面面垂直的判定定理可證得結論成立;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得異面直線與所成角的余弦值;(3)假設存在點,設,其中,利用空間向量法可得出關于的方程,結合的取值范圍可求得的值,即可得出結論.【小問1詳解】證明:,,為的中點,則且,四邊形為平行四邊形,.,即,,又平面平面,平面平面,平面,平面平面,平面平面.【小問2詳解】解:,為的中點,.平面平面,且平面平面,平面,平面.如圖,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,則、、、、,,,則,,異面直線與所成角的余弦值為.【小問3詳解】解:假設存在點,設,其中,所以,,且,設平面法向量為,所以,令,可得,由(2)知平面的一個法向量為,二面角為,則,整理可得,因,解得.故存在點,且點在線段上位于靠近點的四等分點處.21、(1);(2)證明見解析【解析】(1)根據題意列出關于a、b、c的方程組求出a、b、c即可得橢圓方程;(2)設直線的方程為,,,,,聯立直線方程利用韋達定理即可求為定值【小問1詳解】;【小問2詳解】由橢圓方程可知,,,設直線的方程為,,,,,聯立得,∴,,則,∵,,∴,把及代入可得:﹒22、(1)甲分廠加工出來的級品的概率為,乙分廠加工出來的級品的概率為;(2)選甲分廠,理由見解析.【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源汽車充電樁安裝與維護個人聘用合同4篇
- 2025年食堂外包項目績效考核與評估合同3篇
- 2025年度個人消費分期貸款合同模板(2025版)4篇
- 2025年度個人工廠品牌形象及營銷權轉讓合同2篇
- 2025年全球及中國三環(huán)癸烷二甲醇二甲基丙烯酸酯行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國全自動線材前處理機行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球調濕蒸紗機行業(yè)調研及趨勢分析報告
- 2025年度個人借款延期還款及擔保人責任合同2篇
- 2025年度個人房產交易定金擔保合同范本2篇
- 2025年度企業(yè)間技術秘密保密及合作開發(fā)合同4篇
- 勵志課件-如何做好本職工作
- 2024年山東省濟南市中考英語試題卷(含答案解析)
- 2024年社區(qū)警務規(guī)范考試題庫
- 2024年食用牛脂項目可行性研究報告
- 靜脈治療護理技術操作標準(2023版)解讀 2
- 2024年全國各地中考試題分類匯編(一):現代文閱讀含答案
- 2024-2030年中國戶外音箱行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- GB/T 30306-2024家用和類似用途飲用水處理濾芯
- 家務分工與責任保證書
- 消防安全隱患等級
- 溫室氣體(二氧化碳和甲烷)走航監(jiān)測技術規(guī)范
評論
0/150
提交評論